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Numerical Existence Property and Numerical
Content: Intuitionistic Logic versus Arithmetical

Logic

Yvon Gauthier

Abstract

I examine claims of numerical existence for the intuitionistic disjunc-
tion and existential quantifier. I argue that those claims do not secure
numerical content and that a polynomial translation of logical constants
comes closer to a numerical language for mathematics in the framework
of a “contentual” or internal logic of arithmetic.

Keywords: Intuitionistic disjunction and existential quantifier, numerical exis-
tence, numerical content, Kronecker’s general arithmetic, modular polynomial
logic.

Introduction

Intuitionistic logic and intuitionistic number theory have the disjunction prop-
erty and the numerical existence property. The question is to what extent these
properties imply a notion of numerical content. The objective of this paper is
to evaluate the claims about the realizability conditions of numerical existence
and offer an alternative to intuitionistic logic and number theory in terms of a
modular polynomial logic exhibiting a direct translation of logical formulas into
an arithmetical logic internal to classical arithmetic. The term classical arith-
metic is meant here to be contrasted to the set-theoretical Dedekind-Peano
arithmetic formalized as Peano Arithmetic (PA). Classical arithmetic is desig-
nated as Fermat-Kronecker (F-K) arithmetic for classical number theory from
Fermat to Gauss, and Kummer and Kronecker and beyond (see Gauthier [5]).
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1 The disjunction and numerical existence proper-
ties.

The disjunction and numerical existence properties are easy to formulate. For
a disjunction A ∨ B intuitionistic logic requires that one of the disjuncts be
true or provable and for an existential quantifier ∃xAx, it requires to exhibit
a term t free for x in A[x/t] denoting an instantiating element or object not
otherwise specified in the BHK (Brouwer-Heyting-Kolmogorov) interpretation
of intuitionistic logic. S.C. Kleene ([11], [12]) had the idea of calling such an
object a realizer, an arbitrary witness or numerical instance in a given coding
system. Kleene’s realizability interpretation of intuitionistic logic adjoins a
number n to a realizer such that the disjunction A ∨ B needs a pair (n,m)
with values in 0, 1 (for 0 = F and 1 = T ) with the proviso that if n = 0, then
m realizes A and if n = 1, then m realizes B); for the existential quantifier,
∃xAx is realized by a pair (n,m), iff m is a realizer for A(n).

The general setting of Kleene’s realizability is the theory of partial recursive
functions with recursive enumerability for which a partial recursive function is
recursively realizable , iff some natural number n realizes it. This amounts to
recursive enumerability for realized formulas in intuitionistic logic. For exam-
ple, ∃xAx is proven, iff there is proof of Ax for some numeral x as in Gödel
numbering. G. Kreisel has introduced a modified realizability interpretation,
a typed variant with continuous functionals with the specific aim of reintro-
ducing the notion of proof for a realized formula. H. Friedman ([3]) has shown
in line with Kleene’s work that realizability conditions allow to derive the nu-
merical existence property in the set of axioms of a recursively enumerable
extension T of Peano arithmetic where for the intuitionistic disjunction A∨B,
either A is a consequence of T or B is a consequence of T; for the existen-
tial quantifier, the numerical existence property stipulates that for each closed
consequence ∃x(Con(x)) of T where x is a numerical variable, there is natural
number n such that Con(ñ) is a consequence of T. All this is done within Peano
arithmetic (extensions and fragments or substructures included) with the usual
resources of recursive enumerability and set-theoretic machinery. However the
realizability notion is not expressible in intuitionistic arithmetic HAω since it
involves all recursive (partial) functions or functionals (of finite type). The
situation is similar to the first number class in Cantorian set-theory for the
sequence of natural numbers where the final segment (0, ω) is not expressible
as an isomorphism type for its order type is incomparable or irreducible to
any n in the ordinal polynomial of Cantor’s normal form (see Gauthier [7]).
All this means that the numerical existence property is not enough to produce
numerical content, simply because logic is not arithmetic and that general com-
putable functions do not generate feasible arithmetic or polynomial arithmetic
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the results of which can be computed in polynomial time. Here one should
add that numerical witnesses are not arbitrary in a polynomial modular set-
ting, since they are enumerated by a finite segment of an unlimited sequence
of natural numbers in N, of integers in Z or in finite fields Q as André Weil
has taught us. As it is the case for modular arithmetic, Euclid’s algorithm
can act on modular logic for the elimination of logical constants and Fermat’s
infinite descent can be used to eliminate quantifiers in the translation of logic
into arithmetic – e.g. by a calculus on binomial coefficients corresponding to
a logical formula in propositional logic and decidable first-order monadic logic
– . See Gauthier (5) and (6).

2 The notion of numerical content.

E. Bishop ([1]) has advocated the idea of mathematics as a numerical language.
Here the author of the classic Foundations of Constructive Analysis deplores
the fact that intuitionistic logic and mathematics are not constructive enough
and a strict numerical interpretation of implication is needed simply because
the usual

A→ B

amounts simply to the data of a proof of A → B effected by a construction
which outputs a proof of A into a proof of B plus a proof of the said transforma-
tion wanting of any constructive information. It seems that Bishop was aiming
at an existential instantiation for implication, but has been unable to pro-
vide with the right formulation and resorted finally to an appeal to Kronecker
whom he considered closer to his foundational standpoint than was Brouwer.
The proof-theorist U. Kohlenbach ([13]) claims that Gödel’s functional inter-
pretation of intuitionistic logic in Gödel ([8]) comes close to numerical content
by the employment of primitive recursive functionals of finite type. Kohlenbach
acknowledges though that the notion was already present in Hilbert’s paper
(Hilbert [10]), but he doesn’t go back to Kronecker. I have shown that Hilbert
was certainly inspired by Kronecker’s own construction in (Kronecker [14]) and
I have given the details of such a construction in (Gauthier [5], chap. 4).

3 Local negation.

Negation is interpreted “negatively” in intuitionistic logic as Bishop would say:

¬A ≡ A→ 0 = 1(absurdity)
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and here he would lament the lack of numerical content. Gödel’s interpretation
in (Gödel [8]) comes to the same when he writes

¬ p ≡ p ⊃ 0 · 1.

The Dialectica interpretation can have a direct polynomial interpretation (see
Gauthier [5], chap. 7.9) and negation could be defined as 1- a on the pattern
of relative complementation

a→ b = In ((X − a) ∪ b)

for a topological space X, its Interior of open sets and b. Now, one can translate
this in a combinatorial formula

a→ b = C ((2n − a) + b)

where C stands for combinations of integer coefficients a, b of the polynomial
(a0x + b0x)n with a0x standing for 2n − a (2n is here the finite arithmetical
universe as the power set of n integers). See below section 5 for more details
on this construction.

The minus sign also appears in Y. Gurevich’s treatment (Gurevich [9])
of Nelson’s constructible falsity (Nelson [15]) which is expressed in terms of
Kleene’s realizability notion

¬A ⊃ 1 = 0.

For Gurevich’s minus sign, one has

— (A ⊃ B) ≡ A ∧ −B

— ¬(A) ≡ A

— A ⊃ ¬A

and a deduction theorem stating

— A ⊃ A ⊃ B.

Local negation in (Gauthier [4]) could be seen as a still stronger notion, the
minus sign in a congruence relation being arithmetical while Gurevich’s strong
negation is logical and set in a Kripke model for Nelson’s notion of constructible
falsity couched in Kleene’s recursive realizability style. There again numerical
content is only postulated under an apriori numerical existence property. I
present in the following a scheme inspired by Kronecker’s theory of forms,
his divisor theory for homogeneous polynomials. Such a scheme is intended
to procure a direct access to numerical content in an arithmetical (modular
polynomial) logic as the internal logic of arithmetic.
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4 Modular polynomial logic.

For the Kroneckerian background of modular polynomial, I summarize the
polynomial translation of logical constants inspired by Kronecker’s general
arithmetic (allgemeine Arithmetik). See Kronecker (15) and Gauthier (6).

There are various ways to translate a formal system into the natural num-
bers, simple substitution of numerical variables as in Ackermann (1940), trans-
lation of logical into arithmetical operations as in Goodstein’s equational calcu-
lus (1951). In view of our use of Kronecker’s results, we choose the polynomial
translation. We are going to need some facts about the ring of polynomials in
one indeterminate in our consistency proof. We pass briefly over the prelimi-
naries (the graded ring of two or more polynomials has the same convolution
product, which is our main tool- a Grassmannian product could be used to the
same effect).

Polynomials of the form

f = f0 + f1x+ f2x
2 + . . .+ fnx

n

where the f . are the coefficients with the indeterminate x build up the subring
K[x] of the ring K[[x]] of formal power series. The degree of a polynomial is
the degree of the last non-zero coefficient k = n, while the leading coefficient of
a polynomial f of degree k is the constant fk and f is called monic if its leading
coefficient is 1. Thus polynomials are power series having only a finite number
of non-zero coefficients. The involution or Cauchy product of two polynomials
will play an important role in our translation; we write it

f · g =

(∑
m

fmx
m

)(∑
n

gnx
n

)
=

(∑
m

∑
n

fmgnx
m+n

)
.

The sum f + g of polynomials f and g is obtained by simply adding corre-
sponding coefficients. Homogeneous polynomials have all their non-zero terms
of the same degree and they can be put in the following convenient form

aox
m + a1x

m−1y + . . .+ amy.

We are interested in irreducible ( = prime in K[x]) polynomials. Every
linear polynomial is irreducible. K[x] has the property of unique factorization
and this fact will be crucial in our future developments1.

1Kronecker had proven the unique factorization theorem in the following formulation:
� Every integral algebraic form(= polynomial) is representable as a product of irreducible
(prime) forms in a unique way�(see Kronecker 1882, p. 352). Kronecker is interested in the
theory of divisibility for forms and considers primitive forms (forms with no common divisor
greater than 1 ), rather than prime polynomials in his work. The notions of integral domain
and unique factorization domain are direct descendants to that theorem.
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4.1 The inner arithmetical model

When we write, for example,

ϕm(∃xAx)[n+m+ ` . . .] = 1, iff
∑

An ∈ Dm

we can drop the right part and write

ϕm(∃xAx)[n+m+ ` . . .] =< n+m+ ` . . . >= 1

to mean that we have a complementary mapping (of the intuitionistic spread)
ξ : N→ N, so that we really have a polynomial function which evaluates poly-
nomials by sequences of natural numbers after having defined an evaluation
map of formulas into polynomials. The whole process is made possible by sub-
stitution alone. Moreover, in category-theoretic language, the indeterminate x
is a universal element for the functor U(ϕ(x)) = n for an integer n. If we look
at variables of logical formulas as indeterminates, then any number of variables
may be reduced to one.

We are going to make an essential use of Kronecker’s notion of the content
of forms in (1882, p. 343). A form M is contained in another form M ′ when the
coefficients of the first are convoluted (combined in a Cauchy product) in the
coefficients of the second. This idea of a content <Enthalten-Sein> of forms
can be summarized in the phrase �The content of the product is the product
of the contents (of each form)� which can be extracted from Kronecker’s paper
(1968, ll, 419-424). Thus, for a form to be contained or included in another
form is simply to be linearly combined with it (to have its powers convoluted
with the powers of the second form). We can adopt here a general principle
of substitution - elimination formulated by Kronecker (1882). We state the
Substitution Principle:

1) Two homogeneous forms (polynomials) F and F ′ are equivalent
if they have the same coefficients (i.e. content);

2) Forms can be substituted for indeterminates (variables) provided
the (linear) substitution is performed with integer coefficients.

We have immediately the following Proposition 1 (proposition X in Kronecker):

Linear homogeneous forms that are equivalent can be transformed
into one another through substitution with integer coefficients2.

2This can be seen as the precursor of the problem of quantification over empty domains.
We know that we have MP

A,A ⊃ B

B
in an empty domain, provided that A and B have the same free variables. But Kronecker
had a more general theory of inclusion or content of forms in mind and the transformation in
question is a composition of contents, an internal constitution of polynomials (forms) where
indeterminates are not the usual functional variables.
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We have also the following Proposition 2 (proposition X0 in Kronecker):

Two forms F and F ′ are absolutely equivalent, if they can be trans-
formed into one another.

These propositions can be considered as lemmas for the unique factorization
theorem for forms which Kronecker considered as one of his main results. The
substitution procedure is simultaneously an elimination procedure, since in-
determinates <Unbestimmte> are replaced by integer coefficients. Thus an
indefinite (or effinite) supply of variables can be made available to a formal
system and then reduced by the substitution-elimination method to an in-
finitely descending or finite sequence of natural numbers, as will be shown in
the following. The equivalence principle makes it possible to have a direct
translation between forms (polynomials) and (logical) formulas.

The substitution process takes place inside arithmetic, from within the
Galois field F ∗, i.e. the minimal, natural or ground field of polynomials which
is the proper arena of the translation and indeterminates - Kronecker credits
Gauss for the introduction of <indeterminatae> - are the appropriate tools for
the mapping of formulas into the natural numbers. The important idea is that
indeterminates in Kronecker’s sense can be freely adjoined and discharged and
although Kronecker did not always suppose that his forms were homogeneous,
we restrict ourselves to homogeneous polynomials.
Definition : The height of a polynomial is the maximum of its lengths (number
of its components or terms) -the height of a polynomial is indicated by a lower
index. Let us rewrite the eight clauses of 2 in the polynomial fashion of the
valuation map ϕ̂.
Clause 1) An atomic formula A can be polynomially translated as

ϕ̂(A)[n] = (aox)

(where the a0 part is called the determinate and the x part the indeterminate
and ϕ̂ is the polynomial valuation function or map). Here the coefficient (ao)
corresponds to a given natural number (the “valuator”) and 0 indicates that
it is the first member of a sequence, x being its associate indeterminate. The
polynomial ((aox)) is thus a combination of the two polynomials (1,0,0,0 . . . )
and (0,1,0,0 . . . ). We identify polynomials by their first coefficients.
Clause 2) The negation of an atomic formula, that is ¬A , is translated as

ϕ̂(¬A)[n] = (1− a0x)

Clause 3) The conjunction A and B is translated as ϕ̂(A ∧ B)(n x m) =
(a0x)·(b0x) for the product of monomials (a0x) and (b0x).
Clause 4) The disjunction A or B is rendered by

(A ∨B)(n+m) = (a0x+ b0x).
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Clause 5) Local implication A → B is rendered by ϕ̂(A → B)(mn) = (ā0x +
b0x)n for ā0x = 1− a0x.
Remarks : How is implication to be interpreted polynomially? A developed
product of polynomials has the form

a · b =

(∑
i

aix
i

)(∑
j

bjx
j

)
=

(∑
i

∑
j

aibjx
i+j

)
.

For ab we could simply write (a+ b)n for the binomial coefficients and put

(a0x+ b0x)n = axo = nan+1xbx+ [n(n− 1)/2!]an−22 x2b2x
2 + . . .+ bx0x

n

in short
(a0x+ b0x)ni<n =

∑
i+j=n

(i+ j)aibjxn.

The rationale for our translation is that we want to express the notion of
inclusion of a in b by intertwining or combining their coefficients in a ”crossed”
product, the sum of which is 2n which is also the sum of combinations of n
different objects taken r at a time

n∑
r=0

Cnr .

Linear combination of coefficients is of course of central importance in Kro-
necker’s view and one of his fundamental results is stated: �Any integral func-
tion of a variable can be represented as a product of linear factors� (1968, II,
209-247). In his (1968, III, 147-208), Kronecker refers to Gauss’s concept of
congruence and shows that a modular system with infinite (indeterminate) el-
ements can be reduced to a system with finite elements. This is clearly the
origin of Hilbert’s basis theorem (1965, III, 199-257) on the finite number of
forms in any system of forms with

F = A1F1 +A2F2 + . . .+AmFm

for definite forms F1, F2, . . . , Fm of the system and arbitrary forms A1, A2, . . . ,
Am with variables (indeterminates) belonging to a given field or domain of
rationality <Rationalitätsbereich>. The fact that exponentiation is not com-
mutative is indicated by the inclusion a ⊂ b. The combinatorial nature of
implication is made more explicit in polynomial expansion and is strengthened
by the symplectic (interlacing) features of local inclusion of content. We may
also define implication, in analogy with the relative complement, as

(1N − a0x) + b0x
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where 1N is the arithmetic universe polynomially expanded.
Clause 6) ϕ̂(∃xAx)[m+ n+ ` . . .] =

∑
0(a0x+ b0x+ c0x . . .)i<n where

∑
is an

iterated sum of numerical instances with a0 as the first member of the sequence.
Clause 7) ϕ̂(∀xAx)[n×m× . . .× `] =

∏
0(a0xb0xc0x)i<n.

Clause 8) ϕ̂(>±xAx)[n + m + ` . . .] =
∏

0(a0x + b0x + c0x . . .)n for the effinite
quantifier.
Remarks : The effinite quantifier calls for some clarification. While the classical
universal quantifier stands here for finite sets only, the effinite quantifier is
meant to apply to infinitely proceeding sequences or effinite sequences. These
are not sets and do not have a post-positional bound; we put an n to such
sequences and a 2n to sequences of such sequences

0, 1, 2, . . . , n, . . . , 2n

with the understanding that n signifies an arbitrary bound. It should be
pointed out that Boole in his Mathematical Analysis of Logic (1847) had also
a universe (of classes) denoted by 1; negation was interpreted as 1 − x . The
fact that the ring K[x] of polynomials enjoys the unique factorization property
exhibited by infinite descent coupled with the proof by infinite descent of the
infinity of primes makes essential use, from our point of view, of the effinite
quantifier. We then have a combinatorial formulation

n∏
0

(a0xb0xc0x . . . nnx
n)

for the effinite quantifier; since n! =
∏
c<n c , the combinations of n. I call this

scheme the absolute or standard scale. Any other scale is an associate scale (of
indeterminates) and it is reducible by substitution to the standard scale.
As a foundational precept, there is no ω. Any transnatural or transarithmetic
(transfinite, in Cantorian terminology) ordinal scale, e.g. up to ε0 , is an as-
sociate scale and is by definition reducible. It is clear, from a Kroneckerian
point of view, that Cantor’s transfinite arithmetic becomes a dispensable asso-
ciate (with an indeterminate pay-off!). The arithmetic universe n is naturally
bounded by 2n and not by 2ℵ0 for infinite power series!

4.2 The consistency proof

Gentzen’s pairing of reduction rules with transfinite inductions in the ε0 seg-
ment may be looked at as an associate scale - the scale of ordinal numbers
associated with every derivation (see Gentzen, 1969). The theorem of trans-
finite induction makes all ordinal numbers ”accessible” by running through
them in an increasing order; the reduction procedure then allows a descent
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according to the decreasing order of the ordinal numbers. In the same spirit,
Takeuti attempts in (1975) a justification of transfinite induction by invoking
the principle : �When all numbers smaller than β are recognized as accessi-
ble, the β is itself accessible�. But instead of strictly increasing sequences of
ordinals βo < β1 < . . . < βε0 , Takeuti introduces directly strictly decreasing
sequences µ > . . . > µ1 > µ0 for µ = lim(ωµn). As I have shown (see Gau-
thier, 1991), these ordinals are not uniformly recessible (over an immediate
predecessor) and cannot count as ordinals in the absolute scale. On the other
side, the associate scale can be reduced by a uniform procedure and can be
entirely dispensed with, in accordance with Kronecker’s general arithmetic.

Ackermann’s consistency proof in (1940) also uses a decreasing sequence of
ordinal indices in order to prove his finiteness result for global substitutions
<Gesamtersetzungen> of fundamental types; his m-sequences are uniformly
(immediately) recessible and the reduction procedure ends after a finite number
of steps. However, despite the fact that his general recursion procedure is also
built in the fashion of infinite descent, Ackermann must refer to the associate
(indeterminate) scale of transfinite ordinals which he then reduces one-to-one
to finite ordinals. But the transfinite ordinals are not immediately recessible
and the upper bound estimate 2α for indices of m-sequences (Ackermann, 1940,
p. 193) has only a relative meaning, since it is not independent of some use
of transfinite induction, as Ackermann admits3. Transfinite induction means
always a detour via an infinite set.

Instead of the ordinal hierarchy of set-theoretic ascendency, I use here the
arithmetic of irreducible polynomials to show the internal consistency of infinite
descent in a direct way.

4.3 The elimination of logical constants

The connectives of negation, disjunction, conjunction are directly eliminable
by translation into the arithmetic interpretation since they can be viewed as
difference, sum and product of polynomials in a finite number of terms (con-
stants and indeterminates or variables). We have then
Proposition 5.3.1 Connectives are eliminable through direct translation in the
polynomial interpretation.
Proof. Rewrite the logical rules as follows for the sequent calculus with Γ

3Gödel’s own consistency proof of arithmetic (The Dialectica interpretation) (1958) makes
use of a general recursion schema (of functionals) over all finite types which is equivalent to
complete induction. Herbrand’s proof (1931) also requires general recursive functions. It
is my contention that the concept of recursion stems from arithmetic reduction (recursion)
procedures originating with Dedekind, but mainly from Kronecker’s more algorithmic general
arithmetic. Recursion is also ”récurrence” which in France was another name for infinite
descent.
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the antecedent and ∆ the (single) consequent, both consisting of polynomials
(monomials); we write for negation

(Γ · a0x) ·∆
Γ · ((1− a0x) + ∆)

Γ · (a0x+ ∆)

(Γ · ((1− a0x) ·∆

with ∆ empty i.e. ”without content” in this case, or multiplication by zero
and the understanding that the line has the meaning simply of an ordered
sequence of sequents (consisting of sequences of formulas themselves). It should
be obvious that we have replaced the sign ` by the operation · in order to have
polynomial uniformization which does not alter the meaning of the rules;
for disjunction :

Γ · (a0x+ ∆)

Γ · ((a0xb0x) + ∆)

Γ · (b0x ·∆)

Γ · ((a0xb0x) + ∆)

and also
(Γ · a0x) ·∆ (Γ · b0x) ·∆

(Γ · (a0x+ b0x)) ·∆

for conjunction :

(Γ · a0x) ·∆
(Γ · (a0x+ b0x)) ·∆

(Γ · b0x) ·∆
(Γ · (a0x+ b0x)) ·∆

and also
Γ · (a0x+ ∆) Γ · (b0x+ ∆)

Γ · ((a0x+ b0x) + ∆)

Remarks: We can treat implication as

Γ · a0x+ b0x+ ∆

Γ · ((a0x) + b0x) + ∆

Γ · (a0x+ ∆1) (Γ · b0x) + ∆2

Γ · ((a0x) · b0x) ·∆1 + ∆2

where ∆1, and ∆2 are two different sequences. There is some artificiality in
the symmetrical treatment of intelim rules - the sagittal correspondence - in
natural deduction systems (or in the sequent calculus). The symmetry induced
by the inversion principle is not derived from the content (of symmetric poly-
nomials), but from a formal duality which is not intrinsic or internal. Negation
is generally not involutive- except in finite dual (Boolean) situations- and we
could also introduce non-commuting variables in polynomials or in power se-
ries, while it is precluded by the double (dual) negation. In intuitionistic logic,
this global symmetry is absent and the more complex situations that are re-
flected in the logic are an indication of more genetic, less structural features.
Internal logic is an analysis of content. Here logical content = polynomial
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content. Finally, the detachment or elimination rule is equivalent to Modus
Ponens and the polynomial translation should make manifest the content of
the sequential character of inference. Gentzen’s linear logic –Gentzen used the
phrase ”lineares Räsonieren”- is by itself a surface phenomenon of the polyno-
mial content. The existential quantifier and the universal quantifier over finite
sets interpreted as iterated (finite) sum and iterated (finite) product are also
directly eliminable. We have
Proposition 5.3.2 The existential and universal quantifiers are eliminable through
direct translation in the polynomial interpretation.
Proof. The universal quantifier can be rendered by

Γ · (a0x+ ∆)

Γ · (
∏
i(aix

i) + ∆)
(∗) (Γ · ax) ·∆

(Γ · (
∏
n(anxn)) ·∆)

(∗∗)

where (*) means that x is an indeterminate not appearing in Γ and (* *)
means that x is an arbitrary term in the polynomial. The existential quantifier
is translated as

Γ · (ax+ ∆)

Γ · (
∑

n(anxn) + ∆)
(∗∗) (Γ · ax) ·∆

(Γ · (
∑

i(aix
i)) ·∆

(∗)

Remarks: The terms aix
i are arbitrary. Since we deal with polynomials (with

integer coefficients), the existence property for the existential quantifier is im-
mediately garanteed and since the (classical) universal quantifier is limited to
finite domains, its scope is always well-defined.

4.4 The elimination of implication

We want to arithmetize (local) implication. We put 1−a = ā for local negation.
We have (āox + box)n) and we want to exhaust the content of implication —
in Gentzenian terms, this would correspond to the exhibition of subformulas
(the subformula property). We just expand the binomial by decreasing powers

(āox+ box)n) = ān0x+ nān−1xb0x+ [n(n− 1)/2!]ān−2xb2x+ . . .+ bn0x

where the companion indeterminate x shares the same power expansion. By
an arithmetical calculation (on homogeneous polynomials that are symmetric
i.e. with a symmetric function f(x, y) = f(y, x) of the coefficients)
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(āox+ box)n) = ān0x+
n−1∑
k=1

(n− 1/k − 1)āk−1
0 x+ (n− 1/k)ak0xb

n−k
0 x+ bnox

=
n∑

k=1

(n/k − 1)ak0xb
n−k
0 x+

n−1∑
k=0

(n− 1/k)ak0xb
n−k
0 x

=
n−1∑
k=0

(n− 1/k)ak+1
0 xbn−k

0 x+
n−1∑
k=0

(n− 1/k)ak0xb
n−k
0 x

= ā0
n−1∑
k=0

(n− 1/k)(ā0 − 1)kbn−1−kx+
n−1∑
k=0

(n− 1/k)āk0x(b0 − 1)n−1−kx

= (ā1x+ b1x)(a1x+ b1x− 1)n−1

and continuing by descent and omitting the x’s, we have

(ā2 + b2)(ā2 + b2 − 2)n−2

. . . . . . . . . . . .

(ān−2 + bn−2 + ān−2 +n−2 −(n− 2))(n−(n−2))

(ān−1 + bn−1 + ān−1 +n−1 −(n− 1))(n−(n−1))

(ān + bn)(ān + bn)n−n.

Applying descent again on (ān + bn) ,we obtain

(ā0 + b0)

or, reinstating the x’s
(ā0x+ b0x).

Remembering that

(āx + bx)nk<n =
∑

k+m=n

(k +m/k)ākbmxn

we have
(āx + bx)n+m=n

k<n =
∏

k+m=n

(k,m) = 2n

or more explicitly

m+n∑
i=0

c1x
m+n=1 = ā0x · b0x

m+n∏
i=1

(1 + cix) = 2n

where the product is over the coefficients (with indeterminates) of convolution
of the two polynomials (monomials) a0 and b0. We could of course calculate
the generalized formula for polynomials

(a0x+ b0x+ c0x+ . . .+ k0x)n =
∑

p,q,r...s

apbqcr . . . ks
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in the same manner, but we shall postpone the general case till we come to the
effinite quantifier for a unified treatment.

The combinatorial content of the polynomial is expressed by the power
set 2n of the n coefficients of the binomial. I contend that this combinatorial
content expresses also the meaning of local (iterated) implication. Convolution
exhibits the arithmetic connectedness that serves to render the logical relation
of implication. Implication is seen here as a power of polynomials, ak and bm

with k < m having their powers summed up and expanded in the binomial
expansion. Some other formula may be used for the product, but it is essential
to the constructive interpretation that the arithmetic universe be bounded by
2n. One way to make things concrete is to analyse a→ b in terms of

a→ b = C((2n − a) + b)

where C can stand for combinations or coefficients. The formula is an arith-
metical analogue of the topological interpretation of intuitionistic implication.
Theorem 5.4.1 Local implication a→ b can be eliminated by interpreting it as
(ā+ b)n .
Proof. By the above construction.

Here I only want to show how is produced a direct polynomial eliminative
translation of logical constants by rewriting intelim rules of Gentzen’s natu-
ral deduction system into a polynomial language. The unique identity axiom
becomes the equality axiom A = A. There are also intelim rules and a poly-
nomial translation for the effinite quantifier >±xAx as a quantification over an
unlimited sequence of natural numbers.

(I ∧)
A B

A ∧B
; a0x, b0x ≡ a0x · b0x

(E ∧)
A ∧B
A

and
A ∧B
B

; a0x · b0x ≡ a0x, b0x

(I ∨)
A

A ∨B
B

A ∨B
; a0x+ b0x ≡ a0x, a0x+ b0x ≡ b0x
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(E ∨)

A ∨B
[A]
...
C

[B]
...
C

C
;
a0x+ b0x ≡ c0x (mod b0x)
a0x+ b0x ≡ c0x (mod a0x)

(I→)

[A]
...
B

A→ B
; a0x ≡ b0x(mod a0x+ 1)

(E→)
A,A→ B

B
; 1− a0x ≡ b0x(mod a0x)

(I¬)

A
⊥
¬A

; 1− a0x ≡ 1(mod a0x)

(E ¬)
A,¬A
⊥

; 1− a0x ≡ 0(mod a0x)

(I ∀) Ax

∀xAx
;
∏
n

a0x
n ≡ a0x(mod n)

(E ∀) ∀xAx
At

; a0x ≡
∏
n

a0x
n(mod 1)

(I ∃) At

∃xAx
;
∑
n

a0x ≡ a0xn(mod 1)
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(E ∃)

∃xA
[Ax]

...
B

B
; a0x ≡

∑
n

b0x
n(mod 1)

(I >±)
Axn
>±xAx

;
∏
n...

a0x ≡ a0xn(mod n× n)

(E >±)
>±xAx
At0

; a0x ≡
∏
n...

a0x
n(mod 1)

In translating logical formulas into congruent forms, we want to represent logi-
cal constants in a polynomial language in order to integrally arithmetize (poly-
nomialize) logic. It is manifest in that context that deduction expressed in a
turnstile A ` A or A/A is a congruence relation in a modular calculus. Impli-
cation is rewritten

(āox+ box)n

for āox = 1−aox, the local negation (complement) of logic; exponent n denotes
the degree of the polynomial (content) of implication that we reduce in the
following way by a calculus on symmetrical polynomials (forms).
Remark. In structural and substructural logics, the deduction theorem

A,B ` C, iff A ` B → C

is also called residuation in the sense that A is a residue in

A+B = C, iff A = C −B.

In those logics, the linear combinations of the premises are subjected to various
complex rules to handle the residues. But in modular polynomial logic, the
residue A is associated to a positive integer multiple n (An) via a congruence
relation

C ≡ B(mod n)

meaning that C − B is divisible by n, thus adding a direct numerical content
to the notion of residuation. In the first three cases above (I ∧), (E ∧) and (I
∨), we could have added (mod 0) showing that the congruence relation leaves
no residue or remainder, that is

C ≡ B (mod 0) implies C = B.
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Our notion of congruence is arithmetical for modular polynomial arithmetic
with integer coefficients in line with Gauss (who invented the concept) and
Kronecker. The algebraic notion of congruence in structural algebraic logics
does not subsume any numerical content.

5 Final remarks

As I mentioned earlier, it is the Fermat-Kronecker number theory, that is
Kronecker’s polynomial arithmetic with Fermat’s infinite descent, which con-
stitutes the foundational background of my work. Obviously, the foundational
motive is alien to set-theoretical foundations and one could quote H.M. Ed-
wards ([2] p. 97) on numerical extensions:

It is usual in algebraic geometry to consider function fields over an
algebraically closed field – the field of complex numbers or the field
of algebraic numbers rather than over Q (the field of rational num-
bers). In the Kroneckerian approach, the transfinite construction
of algebraically closed fields is avoided by the simple expedient of
adjoining new algebraic numbers to Q as needed.

By transfinite construction, Edwards means clearly the use of set-theoretical
devices like Zorn’s lemma and model-theoretic tools like the ultrafilter lemma
which are equivalent to the axiom of choice de facto absent of Kronecker’s
general arithmetic (allgemeine Arithmetik) of polynomials. Algebraic exten-
sions cannot be constructively defined in general, except in finite fields with
explicit numerical extensions. For example, infinite models of set theory have
elementary (first-order) extensions, e.g. generic sets of Cohen’s forcing relation
(including its Boolean-valued models) which by the way mimicks the method
of field extensions, the accessibility relation on possible worlds in a Kripke
model mimicking in turn a timelike forcing relation. Such set-theoretical and
logical techniques do not have any potential for concrete numerical content
and could be defined as transcendental constructions over infinite sets from a
Kroneckerian point of view. So-called constructive or intuitionistic type the-
ories (as in Martin-Löf’s proposals) claim to do without the excluded middle
principle and the axiom of choice in the construction of types, but as soon as
the finite type territory is trespassed with transfinite induction (and recursion),
excluded middle is reintroduced — as noticed by Kolmogorov already in 1925
(see Gauthier [5], chap. 6.4) — together with some version of the axiom of
choice (e.g. dependent choice). One could add that Peano arithmetic, Heyting
arithmetic with transfinite induction and their subtheories or extensions, such
as Gödel’s Dialectica interpretation with induction on all finite types, could
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not be made to have direct access to numerical content and numerical exten-
sions in virtue of their lack in concrete constructive procedures and elementary
arithmetical operations. The moral of this story may be drawn from Edward
Nelson’s Predicative Arithmetic (p. 177) in his program of arithmetization of
logic. Nelson argues that impredicative arithmetic uses induction and recur-
sion principles which need witnesses of witnesses of witnesses. . . for proofs of
consistency, e.g. Gentzen’s proof with reduction steps coupled by numerals as-
sociated with transfinite ordinals or realizability theories necessitating multiple
numerical witnesses for the same logical formula. The proposal in this paper
is a direct translation of logical constants into modular polynomial arithmetic
with infinite descent replacing an induction postulate. Fermat’s (truly finite)
descent needs only finite natural numbers as direct witnesses as they are the
only testifiers or verifiers of the arithmetical process. My own project for an
arithmetical logic dates back to my paper in 1989 ” Finite Arithmetic with
Infinite Descent” Dialectica, 43(4): 329-337. I had sent a preprint to the great
French arithmetician André Weil who had inspired my work. He responded
that he approved of my use of infinite descent, but he didn’t want to com-
ment on my attempted formalization of infinite descent saying that he was not
enough of a logician ”trop peu logicien” (letter from André Weil, dated March
23, 1988 from Princeton Institute for Advanced Study).

Acknowledgements: I wish to thank an anonymous referee for many useful
suggestions.
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Abstract

The literature about quantum theories emphasizes that the algebraic
structures associated to orthodox quantum mechanics are non-distributive.
In this paper we present a usual development on quantum algebras, the
ortholattices, and a correspondent deductive system associated to them,
the orthologic. Then, we show the adequacy between the algebraic or-
tholattices and the propositional orthologic using specifically algebraic
models.

Keywords: Ortholattice, orthologic, algebraic model.

Introduction

The algebras of quantum theories are non-distributive and the corresponding
logics are also non-distributive relative to the operators of conjunction and
disjunction. Because of that it is not possible to use the famous theorem of
Stones Isomorphism to establish their completeness. For more details on the
beginning of quantum theories related to logic we suggest [1], [3], [6], [8] and
[19].

Considering this non-distributivity originated from the non-distributivity
of closed Hilbert spaces used in the foundation of Physical Theories, there is
a tradition to associate to the quantum theories the basic algebraic structure
named ortholattice as a first algebraic approximation.

Goldblatt [9] and Dalla Chiara, Giuntini and Greechie [6] have used an
interesting semantic in Kripke’s style to connect the algebraic models of ortho-
lattices with the propositional quantum logic, the orthologic.

In this paper, we present algebraic aspects of quantum algebras and, then,
we introduce a short deductive system very similar to those presented in above
papers. We show some derivations on this Tarski system.

As an original contribution, we present a completely algebraic proof of
soundness and completeness of orthologic relative to the ortholattices.
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1 Algebras of quantum theories

Here we just present some elements of algebraic logic for the development of
quantum logics. These elements are well known and can be met in several texts
as [17], [18], [14], [5], [7] and [12].

Definition 1.1 (Lattice) A lattice is an algebraic structure L = 〈L,f,g〉 such
that L is a non-empty set, f and g are two binary operations on L and for all
a, b, c ∈ L:

L1 (af b)f c = af (bf c) and (ag b)g c = ag (bg c) [associativity]
L2 af b = bf a and ag b = bg a [commutativity]
L3 (af b)g b = b and (ag b)f b = b [absorption].

Proposition 1.2 If L = 〈L,f,g〉 is a lattice and a, b ∈ L, then it holds:
L4 af a = a and ag a = a [idempotency]
L5 af b = a⇔ ag b = b [ordering].

Using condition L5, we can define a relation of partial order on L =
〈L,f,g〉.

Definition 1.3 (Order) a ≤ b⇔ af b = a⇔ ag b = b.

Proposition 1.4 If L = 〈L,f,g〉 is a lattice and a, b, c, d ∈ L, then:
L6 a ≤ ag b and b ≤ ag b
L7 af b ≤ a and af b ≤ b
L8 a ≤ c and b ≤ c⇒ ag b ≤ c
L9 c ≤ a and c ≤ b⇒ c ≤ af b
L10 a ≤ c and b ≤ d⇒ ag b ≤ cg d
L11 a ≤ c and b ≤ d⇒ af b ≤ cf d.

We have defined lattice as an algebraic structure, but this concept can also
be introduced as an ordering structure L = 〈L,≤〉.

Definition 1.5 (Partial order) A binary relation ≤ on a non-empty set L is
a partial order if the relation ≤ is reflexive, antisymmetric and transitive.

Definition 1.6 (Poset) A partially ordered set is a pair 〈L,≤〉 such that L is
a non-empty set and ≤ is a partial order on L.

Definition 1.7 (Supremum) Let 〈L,≤〉 be a poset and a, b ∈ L. A supremum
of {a, b}, if it exists, is an element c ∈ L such that:

(i) a ≤ c and b ≤ c
(ii) if a ≤ d and b ≤ d, then c ≤ d.
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A supremum, if it exists, is unique.
An infimum of {a, b} is defined dually. It is unique, if it exists.
It is usual to denote the supremum of {a, b} by sup{a, b} or a g b and the

infimum of {a, b} by inf{a, b} or af b. The supremum of {a, b} is also named
the least upper bound of {a, b} and the infimum of {a, b} is called the greatest
lower bound of {a, b}.

If 〈L,≤〉 is a poset such that for all a, b ∈ L there exist inf{a, b} and
sup{a, b}, then the algebraic structure determined by 〈L,f,g〉 in which:

af b = inf{a, b} and ag b = sup{a, b}

is a lattice.

It is straightforward to observe that these operations f and g satisfy the
associative, commutative and absorption properties.

We can easily prove that the laws L1 to L11 hold for the poset 〈L,≤〉.
This way we can always see a lattice as a structure L = 〈L,≤,f,g〉.

Lemma 1.8 If L = 〈L,≤,f,g〉 is a lattice, then:
L12 (af b)g (af c) ≤ af (b ∨ c)
L13 ag (bf c) ≤ (ag b)f (ag c).

Proof. The result follows from L6, L7, and L8. �

Definition 1.9 (Distributive lattice) A lattice L = 〈L,≤,f,g〉 is distributive
if the following distributive laws are valid for all a, b, c ∈ L:

L14 (af b)g c = (ag c)f (bg c) and (ag b)f c = (af c)g (bf c).

These are the right distributive laws and, due to the commutative prop-
erty, the left distributive laws are also valid. Besides, only one of these two
distributive laws would be enough to characterize the distributive property
[14].

Definition 1.10 (Lattices with 0 and 1) Let L = 〈L,≤,f,g〉 be a lattice. If
L has the least element with respect to the order ≤, then this element is called
the zero of L and is denoted by 0. On the other hand, if the lattice L has the
greatest element with respect to the order ≤, then this element is called the one
of L and it is denoted by 1.

If the lattice L has the elements 0 and 1, then for every a ∈ L:
L15 af 0 = 0 and ag 0 = a
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L16 af 1 = a and ag 1 = 1.

We denote a lattice with 0 and 1 by L = 〈L,≤,f,g, 0, 1〉.

Definition 1.11 (Pseudo-complement) Let L = 〈L,≤,f,g, 0, 1〉 be a lattice
with 0 and 1. For a ∈ L, if there exists the element −a = max{y ∈ L : af y =
0} in L, then −a is called the pseudo-complement of a.

Definition 1.12 (Pseudo-complemented lattice) A lattice L is called pseudo-
complemented if every element a ∈ L has a pseudo-complement −a ∈ L.

Definition 1.13 (Complement) Let L = 〈L,≤,f,g, 0, 1〉 be a lattice with 0
and 1. If a ∈ L, then an element a ∈ L is called a complement of a in L if:

L17 af a = 0
L18 ag a = 1.

The complement a is a pseudo-complement. But, for example, the intu-
itionistic pseudo-complement of Intuitionistic Logic is not a complement.

Definition 1.14 (Complemented lattice) The lattice L = 〈L,≤,f,g, 0, 1〉 is
called complemented if every element in L has a complement in L. If every
element of L has exactly one complement, then the lattice L is called uniquely
complemented.

If the complement of a is unique, we will denote it by ∼ a. If a lattice L is
uniquely complemented, then we write L = 〈L,≤,∼,f,g, 0, 1〉.

Lemma 1.15 Let L = 〈L,≤,f,g, 0, 1〉 be a distributive lattice with 0 and 1.
If there exists a complement of a, then it is unique.
Proof. If y and z are two complements of a, then a f y = 0, a g y = 1,
a f z = 0, and a g z = 1. As z = 0 g z = (a f y) g z = (a g z) f (y g z) =
1f (y g z) = y g z, we have, y ≤ z. Analogously, z ≤ y and, hence, z = y. �

Definition 1.16 (Boolean algebra) A Boolean algebra B is a distributive and
complemented lattice.

The next results are particular cases of quantum algebras and good refer-
ences are the texts [6] and [15].

Definition 1.17 (Poset with involution) Let L = 〈L,≤, 0, 1〉 be a poset. An
involution on L is a unary operation, denoted by ′, such that for all a, b ∈ L:

L19 a = a ′ ′

L20 a ≤ b⇒ b ′ ≤ a ′.



An Algebraic Approach to Orthologic 25

Then, L = 〈L, ′,≤, 0, 1〉 is a poset with involution.

Proposition 1.18 If L = 〈L, ′,≤, 0, 1〉 is a poset with involution, then the
De Morgan’s laws hold:

L21 (af b)′ = a ′ g b ′

L22 (ag b)′ = a ′ f b ′.

Indeed, in view of L20 in L = 〈L,≤, ′, 0, 1〉 the conditions L20, L21 and
L22 are equivalent.

Besides, in this case, sup{a, b} is defined if, and only if, inf{a, b} is also
defined.

Definition 1.19 (Ortholattice) An ortholattice is a complemented lattice with
involution.

We denote a such structure by L = 〈L,≤, ′, f,g, 0, 1〉.
So in an ortholattice all the conditions L1 - L22, except distributivity L14,

are valid.
This way of including properties mirrors the achievement of Boolean algebra

as in the tradition of Heyting algebras with intermediate algebras (Heyting
algebra - Boolean algebra), with the difference of non-distributivity. The way
from any ortholattice to a Boolean algebra has so many points and we can add
several additional conditions or algebraic axioms depending on the path.

Following this context, the ortholattices are considered basic quantum struc-
tures.

In this paper we concentrate on ortholattices using only algebraic approach,
which we shall posteriorly apply to the other quantum algebraic systems.

Like a last structure, let’s define Kripke models as [6].

Definition 1.20 (Kripke model) A model in the Kripke style for a language
L has the following form: K = (W, ~R,~o,P(W ), v), such that:

(i) W is a non-empty set of possible worlds;
(ii) ~R is a sequence of relations over W ;
(iii) ~o is a sequence of operations defined over W ;
(iv) the subsystem (W, ~R,~o) is called the frame of K;
(v) P(W ) is the set of all subsets of W ;
(vi) v : V ar(L) → P(W ) is a valuation that applies each variable into the

set of all worlds where the variable is true or valid;
(vii) each valuation must preserve conditions that depend on the operators

~o of L;
(viii) the valuations must be extended for the set of all formulas of L.
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Usually we have only one binary relation R in the sequence ~R, called the
accessibility relation.

Considering that we almost always have relations involved in Kripke mod-
els, they are not exactly algebraic models, but a combination of algebraic and
relational structures.

2 Logic of ortholattices

We present in this section the Orthologic, denoted by OL, the logic of
ortholattices, in a similar version to [9] and [6] and oriented by [20].

There is an interesting tradition on logic for quantum theories. We mention
the following references: [10], [2], [11], [4] and [15].

The orthologic formalizes, in the logical language, some of essential char-
acteristics of quantum theories that are unveiled by the orthoalgebras.

We do not have an algebraic conditional operator and circumvent this situ-
ation using a deductive system without any logical implication. We found this
strategy for the first in [9].

The language of OL is indicated by L.
The above literature shows aspects of quantum logics.
The propositional language L has exactly the operators ¬ for negation, and

∧ for conjunction. Thus we take L = {¬,∧}.
The set of formulas of OL is denoted by For(L) and the set of propositional

variables by V ar(L) = {p1, p2, p3, . . .}. Of course V ar(L) ⊆ For(L).
Thus, For(L) is constructed from V ar(L) using only the symbols in L =

{¬,∧}.
We do not have the disjunction ∨ as a basic operator in the language L, but

considering that in any ortholattice the De Morgan laws hold, we can define
the disjunction of L by:

ϕ ∨ ψ =df ¬(¬ϕ ∧ ¬ψ).

Definition 2.1 (Configuration) For Σ ∪ {ψ} ⊆ For(L), a configuration is an
expression of type Σ ` ψ.

These configurations are schemes of formulas and we mean that we derive
the consequence at right of ` from the antecedent (a set of premises) at left
of `. The antecedent is a set of formulas and it is not required that it be a
sequence or a finite multiset as in some calculus of sequents.

Derivation is a figure composed by a sequence of configurations.
For a formal definition we need to explicit the rules for derivations.
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In general, if for i ∈ {1, 2, . . . , n}, Σi ∪ {ψi} ⊆ For(L), then each rule has
the form:

Σ1 ` ψ1, . . . ,Σn−1 ` ψn−1
Σn ` ψn

,

with the meaning that from the premises, the configurations above the line,
each rule permits the deduction of configuration Σn ` ψn.

The rules without premises are special cases, where the set of premises is

empty, such that instead of:
∅

Σ ` ψ
we just write Σ ` ψ.

Of course, the configuration ` ϕ must be understood as ∅ ` ϕ.

Now, we present the properties of derivability for the logical system OL.

This system does not have axioms, but only rules determined by the fol-
lowing configurations.

Rules without premises:

(ROL1) {ϕ} ` ϕ (auto-deductibility)

(ROL2) {ϕ} ` ¬¬ϕ (double negation)

(ROL3) {¬¬ϕ} ` ϕ (double negation)

(ROL4) {ϕ ∧ ψ} ` ϕ (simplification)

(ROL5) {ϕ ∧ ψ} ` ψ (simplification)

(ROL6) {ϕ ∧ ¬ϕ} ` σ (explosion)

Rules with one premise:

(ROL7)
Γ ` ϕ

Γ ∪ Σ ` ϕ
(monotonicity)

(ROL8)
{ψ} ` ϕ
{¬ϕ} ` ¬ψ

(contraposition)

(ROL9)
{ϕ,ψ} ` σ
{ϕ ∧ ψ} ` σ

(left conjunction)

Rules with two premises:
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(ROL10)
Γ ` ϕ, ∆ ∪ {ϕ} ` ψ

Γ ∪∆ ` ψ
(cut)

(ROL11)
{ψ} ` ϕ, {ψ} ` ¬ϕ

` ¬ψ
(absurdity)

(ROL12)
Γ ` ϕ, Γ ` ψ

Γ ` ϕ ∧ ψ
(right conjunction).

From auto-deductibility, monotonicity and cut, we observe that OL is a
logic of Tarski. These three rules are considered structural rules, that is, rules
without connectives. The other rules have the aim to put the particularities of
an ortholattice in the propositional context.

Definition 2.2 (Derivation) A derivation in OL is a finite sequence of con-
figurations Σ ` ψ such that each element in the sequence is a premise, or a
rule without premises, or a conclusion of a rule whose premises are previous
elements in the sequence.

Definition 2.3 (Derivable formula) A formula ψ is derivable from Σ if there
is a derivation such that the last element of derivation is the configuration
Σ ` ψ.

Definition 2.4 (Theorem) A formula ψ is a theorem of OL if it is derivable
from the empty set, that is, ∅ ` ψ or ` ψ.

Now we present some deduced rules in OL.

(a)
{ϕ} ` ψ, {ψ} ` σ

{ϕ} ` σ
(transitivity 1)

Consider the Cut
Γ ` ψ, ∆ ∪ {ψ} ` σ

Γ ∪∆ ` σ
with Γ = {ϕ} and ∆ = ∅.

(b)
Γ ` ψ, {ψ} ` σ

Γ ` σ
(transitivity 2)

Consider the Cut
Γ ` ψ, ∆ ∪ {ψ} ` σ

Γ ∪∆ ` σ
with ∆ = ∅.

(c)
Γ ` ψ, Γ ` ¬ψ

Γ ` ϕ
(contradiction)

1. Γ ` ψ premise
2. Γ ` ¬ψ premise
3. Γ ` ψ ∧ ¬ψ right conjunction in 1 and 2
4. {ψ ∧ ¬ψ} ` ϕ explosion
5. Γ ` ϕ (b) in 3 and 4.
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(d) If ϕ ∈ Γ, then Γ ` ϕ
1. {ϕ} ` ϕ auto-deductibility
2. Γ ` ϕ monotonicity in 1.

(e)
{ψ} ` ϕ, {¬ψ} ` ϕ

` ϕ
(proof by cases)

1. {ψ} ` ϕ premise
2. {¬ψ} ` ϕ premise
3. {¬ϕ} ` ¬ψ contraposition in 1
4. {¬ϕ} ` ¬¬ψ contraposition in 2
5. ` ¬¬ϕ absurdity in 3 and 4
6. ` ϕ double negation in 5.

This system is particularly planned for derivations but not for proofs of
theorems. However we can show some case of theorem.

(f) ` ψ ∨ ¬ψ (excluded middle)
1. {ϕ ∧ ¬ϕ} ` ϕ simplification
2. {ϕ ∧ ¬ϕ} ` ¬ϕ simplification
3. ` ¬(ϕ ∧ ¬ϕ) absurdity in 1 and 2
4. ` ¬ϕ ∨ ¬¬ϕ De Morgan in 3
5. ` ψ ∨ ¬ψ replacement in 4.

Goldblatt defined theorem in this logic as any formula ϕ such that ψ∨¬ψ `
ϕ holds [9].

Proposition 2.5 {ϕ1, . . . , ϕn} ` ψ ⇐⇒ ϕ1 ∧ . . . ∧ ϕn ` ψ.
Proof. (⇒) By n− 1 applications of left conjunction.

(⇐) By auto-deductibility we have {ϕi} ` ϕi, for 1 ≤ i ≤ n. Then, by
monotonicity {ϕ1, . . . , ϕn} ` ϕi, for 1 ≤ i ≤ n. From that, applying right
conjunction n − 1 times we have {ϕ1, . . . , ϕn} ` ϕ1 ∧ . . . ∧ ϕn and using the
hypothesis and the transitivity 2 we have that {ϕ1, . . . , ϕn} ` ψ. �

Proposition 2.6 (Finite deductibility) Σ ` ψ ⇐⇒ there is Σf finite such
that Σf ⊆ Σ and Σf ` ψ.
Proof. Each derivation is finite and uses only a finite number of formulas. �

Corollary 2.7 Σ ` ψ ⇐⇒ there are ϕ1, . . . , ϕn ∈ Σ such that ϕ1∧ . . .∧ϕn `
ψ.
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Definition 2.8 (Inconsistent and consistent sets) A set of formulas Σ is in-
consistent if there is a formula ψ such that Σ ` ψ∧¬ψ. The set Σ is consistent
if it is not inconsistent.

Definition 2.9 (Deductive closure) The deductive closure of the set Σ is the
set of all formulas derivable from Σ, that is, Σ = {ϕ : Σ ` ϕ}.

Of course Σ ⊆ Σ.

Definition 2.10 (Theory) Theory is a set of formulas deductively closed, that
is, Σ = Σ.

3 Soundness

In this section we show that every derivation in OL is sound, that is, if
we have a syntactical derivation Σ ` ψ, then we also have a consequence of ψ
from Σ but in a semantic context.

As a first step we need to present this semantic consequence.

Definition 3.1 (Restrict valuation) Let L be an ortholattice. A restrict val-
uation is a function v̆ : V ar(L) → L that maps each variable of OL over an
element of L.

Definition 3.2 (Valuation) Valuation is a function v : For(L) → L that ex-
tends naturally and uniquely the function v̆ as follows:

(i) v(p) = v̆(p)
(ii) v(¬ϕ) = v(ϕ)′

(iii) v(ϕ ∧ ψ) = v(ϕ)f v(ψ).

Definition 3.3 (Algebraic realization) Algebraic realization is a pair (L, v)
such that L is an ortholattice and v is a valuation for OL.

Definition 3.4 (Algebraic model) Let Γ ⊆ For(L) and (L, v) an algebraic
realization for OL. Then A = (L, v) is an algebraic model for Γ, or A satisfies
Γ, if v(γ) = 1, for every γ ∈ Γ.

We denote that A = (L, v) is a model for Γ by A � Γ and, in particular, if
ϕ ∈ For(L) and v(ϕ) = 1, then A � ϕ.

Definition 3.5 (Validity in L) A formula ϕ is valid in L if for every valuation
v, the algebraic realization A = (L, v) satisfies ϕ, that is, A � ϕ, for every
valuation v.
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In this case we fix L but take any valuation v.

Definition 3.6 (Valid formula) A formula ϕ is valid if it is valid in any alge-
braic realization A.

Now we do not fix any valuation v neither any ortholattice L. We denote
that ϕ is valid by � ϕ.

We will denote any valid formula by >, and any invalid formula by ⊥. A
formula is invalid if it is not valid in any algebraic realization.

Definition 3.7 (Algebraic consequence relative to A) Let Γ ⊆ For(L) and
A = (L, v) an algebraic realization. A formula ψ is an algebraic consequence
of Γ relative to A, what is denoted by Γ �A ψ, if:

for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then b ≤ v(ψ).

The idea is that v(ψ) must be equal or bigger than the infimum of {v(γ) :
γ ∈ Γ}. If Γ = {γ1, . . . , γn}, then Γ � ψ ⇔ v(γ1) f . . . f v(γn) ≤ v(ψ) and, in
particular, {γ} �A ψ ⇐⇒ v(γ) ≤ v(ψ).

It is usual to define a similar consequence in the following way: [∗] If Γ∪{ψ}
is a set of formulas, then Γ implies ψ in the model A, if vA(γ) = 1, for every
γ ∈ Γ, then vA(ψ) = 1.

The above definition implies this condition [∗], but they are not equivalent.
If we have some A in which 0 < vA(ψ) < vA(γ) < 1, then, in accordance

to [∗] we have {γ} � ψ, but it does not happen following the above definition
of consequence.

The definition is perfect for the characterization of ortholattices.

Definition 3.8 (Logical Consequence) A formula ψ is a logical consequence of
Γ, or Γ implies ψ, what is denoted by Γ � ψ, if for any algebraic realization A,
Γ �A ψ.

Now we can prove the Soundness Theorem.

Theorem 3.9 If Γ ⊆ For(L), then Γ ` γ ⇒ Γ � γ.
Proof. We need to show that each rule of OL preserves the validity.

Let A = (L, v) be any algebraic realization. Then L is an ortholattice and
each rule of OL is valid because:

(ROL1): v(ϕ) = v(ϕ).
(ROL2) and (0ROL3): v(ϕ) = v(¬¬ϕ).
(ROL4) and (0ROL5): v(ϕ ∧ ψ) = v(ϕ)f v(ψ) ≤ v(ϕ), v(ψ).
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(ROL6): v(ϕ ∧ ¬ϕ) = v(ϕ)f v(ϕ)′ = 0 ≤ v(σ), for any σ.

(ROL7): Γ � ψ, then for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then
b ≤ v(ψ). Now, if we take Γ∪Σ, the values of Σ do not invalidate the condition,
because they may only vary with lower values. Hence Γ ∪ Σ � ψ.

(ROL8): {ϕ} � ψ ⇔ v(ϕ) ≤ v(ψ)⇔ v(ψ)′ ≤ v(ϕ)′ ⇔ {¬ψ} � ¬ϕ.
(ROL9): {ϕ,ψ} � σ ⇔ v(ϕ)fv(ψ) ≤ v(σ)⇔ v(ϕ∧ψ) ≤ v(σ)⇔ {ϕ∧ψ} �

σ.

(ROL10): if Γ � ϕ and Σ ∪ {ϕ} � ψ, then then for any b ∈ L, if b ≤ v(γ)
for every γ ∈ Γ then b ≤ v(ϕ), and then for any b ∈ L, if b ≤ v(σ) for every
σ ∈ Γ∪{ϕ} then b ≤ v(ψ). Thus, for any b ∈ L, if b ≤ v(δ) for every δ ∈ Γ∪Σ
then b ≤ v(ψ), that is, Γ ∪ Σ � ψ.

(ROL11): if {ψ} � ϕ and {ψ} � ¬ϕ, then v(ψ) ≤ v(ϕ) and v(ψ) ≤ v(¬ϕ),
so v(ψ) ≤ v(ϕ)f v(ϕ)′ = 0 and v(ψ) = 0. Thus v(¬ψ) = 1 e hence � ¬ψ.

(ROL12): if Γ � ϕ and Γ � ψ, then for any b ∈ L, if b ≤ v(γ) for every
γ ∈ Γ then b ≤ v(ϕ), and for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then
b ≤ v(ψ). As v(ϕ ∧ ψ) = v(ϕ)f v(ψ), then for any b ∈ L, if b ≤ v(γ) for every
γ ∈ Γ, then b ≤ v(ϕ ∧ ψ), that is, Γ � ϕ ∧ ψ. �

4 Completeness

Now we need to show that the set of logical consequences and derivable
formulas are the same.

The proof of completeness for this logic was generally done using some
Kripke model, as we can see for example in ([9], p. 26) and ([6], p. 181). Our
proof below has a specifically algebraic character. Pavičić, [16] also presents
an algebraic proof though less general than the following.

Definition 4.1 (Full set) A set of formulas ∆ is full if it is non-empty, con-
sistent and holds:

(i) if ϕ ∈ ∆ and {ϕ} ` ψ, then ψ ∈ ∆;
(ii) if ϕ,ψ ∈ ∆, then ϕ ∧ ψ ∈ ∆.

Proposition 4.2 If ∆ is full, then:
(a) ϕ,ψ ∈ ∆⇔ ϕ ∧ ψ ∈ ∆;
(b) ∆ ` ϕ⇔ ϕ ∈ ∆;
(c) > ∈ ∆.

Proof. (a) If ϕ ∧ ψ ∈ ∆, as {ϕ ∧ ψ} ` ϕ and {ϕ ∧ ψ} ` ψ, then by item (i)
above ϕ,ψ ∈ ∆.



An Algebraic Approach to Orthologic 33

(b) If ∆ ` ϕ, by Corollary 2.7, there are ψ1, . . . , ψn ∈ ∆ such that {ψ1 ∧
. . . ∧ ψn} ` ϕ and, by (a), ψ1 ∧ . . . ∧ ψn ∈ ∆. So ϕ ∈ ∆.

If ϕ ∈ ∆, by example (d) ∆ ` ϕ.
(c) As for any ∆, ∆ ` >, then, by (b), > ∈ ∆. �

From item (b), we observe that any full set is a theory.

Proposition 4.3 If ∆1 and ∆2 are full, then ∆1 ∩∆2 is full.
Proof. If ∆1 and ∆2 are consistent, then ∆1 ∩∆2 is consistent.

If ϕ ∈ ∆1 ∩ ∆2 and {ϕ} ` ψ, then ϕ ∈ ∆1 and {ϕ} ` ψ, e ϕ ∈ ∆2 and
{ϕ} ` ψ. As ∆1 and ∆2 are full, then ψ ∈ ∆1 and ψ ∈ ∆2. Hence ψ ∈ ∆1∩∆2.

If ϕ,ψ ∈ ∆1 ∩∆2, then ϕ,ψ ∈ ∆1 and ϕ,ψ ∈ ∆2. As ∆1 and ∆2 are full,
then ϕ ∧ ψ ∈ ∆1 and ϕ ∧ ψ ∈ ∆2. Finally, ϕ ∧ ψ ∈ ∆1 ∩∆2. �

Proposition 4.4 Γ ` ϕ ⇐⇒ ϕ belongs to every full extension of Γ.
Proof. (⇒) Suppose that Γ ` ϕ and ∆ is a full extension of Γ. Then, by
Corollary 2.7, there are ϕ1, . . . , ϕn ∈ Γ ⊆ ∆ such that {ϕ1 ∧ . . . ∧ ϕn} ` ϕ.
Moreover, by Definition 4.1 (ii) and (i), ϕ1 ∧ . . . ∧ ϕn ∈ ∆ and hence ϕ ∈ ∆.

(⇐) By contrapositive, suppose that Γ is consistent and Γ 0 ϕ.
Thus ϕ /∈ Γ and, of course, Γ ⊆ Γ. So, we show that Γ is full.
Since Γ is consistent, then Γ is consistent and Γ 6= ∅.
Now:
(i) suppose ψ ∈ Γ and {ψ} ` δ. Then Γ ` ψ and {ψ} ` δ and so, by

example (b), Γ ` δ and hence δ ∈ Γ.
(ii) if ψ, δ ∈ Γ, then there are ψ1 ∧ . . . ∧ ψn, δ1 ∧ . . . ∧ δm ∈ Γ such that

{ψ1 ∧ . . . ∧ ψn} ` ψ and {δ1 ∧ . . . ∧ δm} ` δ. Thus, by monotonicity and right
conjunction, {ψ1 ∧ . . . ∧ ψn ∧ δ1 ∧ . . . ∧ δm} ` ψ ∧ δ. Therefore, Γ ` ψ ∧ δ and
ψ ∧ δ ∈ Γ.

Hence Γ is full. �

Definition 4.5 (Compatible sets) The sets ∆ and Λ are compatible if there is
no formula ψ such that ∆ ` ψ and Λ ` ¬ψ.

The next result is more properly an observation.

Proposition 4.6 If ∆ and Λ are compatible, then for every formula ψ, if
∆ ` ψ, then Λ 0 ¬ψ.
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Theorem 4.7 If ∆ 0 ¬ϕ, then there exists Λ compatible with ∆ such that
Λ ` ϕ.
Proof. Suppose that ∆ 0 ¬ϕ. If Λ = {ϕ}, by autodeductibility, Λ ` ϕ and
∆ and Λ are compatible, for on the contrary there is some formula σ such that
∆ ` ¬σ and Λ ` σ. Then {ϕ} ` σ and by contraposition {¬σ} ` ¬ϕ. As
∆ ` ¬σ, by cut, ∆ ` ¬ϕ. �

Theorem 4.8 Every consistent set Γ is included in a full set Λ.
Proof. We take an enumeration ψ0, ψ1, ψ2, . . . of For(L) and construct a
sequence of sets Λi, i ∈ N, of compatible sets as in the previous theorem in the
following way.

In the first step Λ0 = Γ. So, if Λn ` ¬ψn, then Λn+1 = Λn ∪ {¬ψn} and
if Λn 0 ¬ψn, then Λn+1 = Λn ∪ {ψn}. Thus, each set Λn is compatible with
every previous set in the sequence and, by definition of compatible sets, they
are consistent.

Finally, we take Λ = ∪Λi, i ∈ N. This set is full, compatible with Γ and
Γ ⊆ Λ. �

Now we must construct a canonical algebraic realization for OL. Its do-
main is the set T of all full theories of OL.

On T we need to determine a structure of an ortholattice.

Definition 4.9 (Structure of full sets) For ϕ,ψ ∈ For(L), we define .̂ :
For(L)→ P(T):

(i) ϕ̂ = {∆ ∈ T : ∆ ` ϕ}
(ii) ⊥̂ = ∅
(iii) >̂ = T
(iv) ϕ̂f ψ̂ = ϕ̂ ∩ ψ̂
(v) ϕ̂ ′ = {∆ ∈ T : ∆ is incompatible with ϕ̂}.

Of course, for every ∆ ∈ T, ⊥ /∈ ∆. On the other side, > belongs to all
full sets. The conjunction coincides with set intersection, but the negation
is not the set complement, because we would have a Boolean algebra with
the classical negation. The classical complementation is a particular case of
ortholattice complementation, however the quantum negation is weaker than
the classical one.

Lemma 4.10 {ϕ} ` ψ ⇔ ϕ̂ ⊆ ψ̂.
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Proof. (⇒) If ∆ ∈ ϕ̂, then ∆ ` ϕ. Since {ϕ} ` ψ, then ∆ ` ψ and hence
∆ ∈ ψ̂.

(⇐) If {ϕ} 0 ψ, then there exists ∆ ∈ T such that ∆ ` ϕ and ∆ 0 ψ.
Thus, ∆ ∈ ϕ̂, but ∆ /∈ ψ̂. So ϕ̂ * ψ̂. �

Now we need to prove the following important result.

Proposition 4.11 The structure 〈T,⊆, ′,f, ⊥̂〉 is an ortholattice.
Proof. As the relation ` is reflexive, transitive and antisymmetric, from the
previous lemma, it follows that the relation ⊆ is a partial order on T. Besides,
⊥̂ and >̂ are the 0 and 1 on T.

Then 〈T,⊆, ′,f, ⊥̂〉 is a complemented partial order with 0 and 1, because:

(i) ψ̂ f ¬̂ψ = ⊥̂ and (ii) ψ̂ g ¬̂ψ = >̂.

(i) ⊥̂ = ∅ ⊆ ψ̂ ∩ ¬̂ψ = ψ̂ f ¬̂ψ. And ∆ ∈ ψ̂ f ¬̂ψ ⇒ ∆ ∈ ψ̂ and ∆ ∈ ¬̂ψ ⇒
∆ ` ψ and ∆ ` ¬ψ ⇒ ∆ ` ⊥. So ψ̂ f ¬̂ψ ⊆ ⊥̂.

(ii) >̂ ⊆ ψ̂ and >̂ ⊆ ¬̂ψ ⇒ >̂ ⊆ ψ̂ g ¬̂ψ = ψ̂ g ψ̂ ′. And ∆ ∈ ψ̂ g ¬̂ψ ⇒
∆ ∈ ψ̂ or ∆ ∈ ¬̂ψ ⇒ ∆ ` ψ or ∆ ` ¬ψ ⇒ ∆ ` ψ ∨¬ψ ⇒ ∆ ` > ⇔ ∆ ∈ >̂. So
ψ̂ g ¬̂ψ ⊆ >̂.

Now we need to show that ′ is an involution.
(iii) Suppose that ϕ̂ 6= ϕ̂ ′ ′. Thus either there is ∆1 ∈ T such that

∆1 ` ¬¬ϕ but ∆1 0 ϕ, or there is ∆2 ∈ T such that ∆2 ` ϕ but ∆2 0 ¬¬ϕ.
We shall analyse only one case. As ∆2 is full and {ϕ} ` ¬¬ϕ, then ∆2 ` ¬¬ϕ.
In any case we have a contradiction.

(iv) By Lemma 5.10, ϕ̂ ⊆ ψ̂ ⇔ {ϕ} ` ψ and, by Contraposition, {ϕ} `
ψ ⇔ {¬ψ} ` ¬ϕ. Again by lemma ϕ̂ ⊆ ψ̂ ⇔ ¬̂ψ ⊆ ¬̂ϕ⇔ ψ̂ ′ ⊆ ϕ̂ ′. �

Definition 4.12 (Canonical valuation) A canonical valuation is any valuation
[.] : For(L)→ P(T ) such that:

(i) [p] := {∆ ∈ T : p ∈ ∆} = p̂.

Proposition 4.13 For every ϕ ∈ For(L), it follows that [ϕ] = ϕ̂.
Proof. By induction on the complexity of ϕ.

If ϕ is a propositional variable, then [p] = p̂, by the above definition.
If ϕ is of the type ¬ψ, then by induction hypotheses, [ψ] = ψ̂. So [ϕ] =

[¬ψ] = [ψ]′ = ψ̂ ′ = {∆ ∈ T : ∆ is incompatible with ψ̂} = {∆ ∈ T : ∆ `
¬ψ} = ¬̂ψ = ϕ̂.

If ϕ is of the type ψ∧σ, then by induction hypotheses, [ψ] = ψ̂ and [σ] = σ̂.
So [ϕ] = [ψ ∧ σ] = [ψ]f [σ] = ψ̂ ∩ σ̂ = ϕ̂. �
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Theorem 4.14 (Strong completeness) If Γ � ψ, then Γ ` ψ.
Proof. If Γ 0 ψ, then Γ ∪ {¬ψ} is consistent. By Theorem 4.8, there exists
a full set Λ such that Γ ∪ {¬ψ} ⊆ Λ. As Λ is full and ¬ψ ∈ Λ, then Λ ` ¬ψ
and so Λ ∈ ¬̂ψ. Thus Λ � ¬ψ. As Λ is full, then Λ 2 ψ and considering that
Γ ⊆ Λ, then Γ 2 ψ. �

In this view the compactness is very simple.

Corollary 4.15 (Compactness) If every finite Γf ⊆ Γ has a model, then Γ
has a model.
Proof. If Γ does not have a model, then for every ∆ ∈ T, it follows that
Γ * ∆. By Theorem 4.8, Γ is inconsistent. Hence, there is a formula ψ such
that Γ ` ψ and Γ ` ¬ψ, that is, there is a finite set Γf ⊆ Γ such that Γf ` ψ
and Γf ` ¬ψ. Thus, the set Γf does not have a model. �

5 Final remarks

We presented the ortholattices and a proof of adequacy between the algebraic
ortholattices and the logic of ortholattices OL using only algebraic tools.

In the next steps we will try to include a conditional in OL and consider
some specifications of ortholattices given by the introduction of new algebraic
axioms. Of course, we must observe how the logical systems follow the algebraic
inclusions.

6 Acknowledgements

This work was sponsored by FAPESP and CNPq.

References

[1] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals
of Mathematics, 37(4):823–843, 1936. DOI: 10.2307/1968621

[2] S lawomir Bugajski. What is quantum logic?. Studia Logica, 41(4):311–316,
1982. DOI: 10.1007/BF00403330

[3] Alonzo Church. Reviewed Work: The Logic of Quantum Mechanics. The
Journal of Symbolic Logic, 2(1):44–45, 1937. DOI: 10.2307/2268815



An Algebraic Approach to Orthologic 37

[4] N. C. A. da Costa and D. Krause. Schrödinger logic. Studia Logica,
53(4):533–550, 1994. DOI: 10.1007/BF01057649

[5] M. L. Dalla Chiara and R. Giuntini. The logics of orthoalgebras. Studia
Logica, 55(1):3–22, 1995. DOI: 10.1007/BF01053029

[6] M. L. Dalla Chiara and R. Giuntini and R. Greechie. Reasoning in Quan-
tum Theory: Sharp and Unsharp Quantum Logics, volume 22 of Trends
in Logic. Springer-Verlag, 2004.

[7] J. M. Dunn and G. M. Hardegree. Algebraic methods in philosophical logic,
volume 41 of Oxford Logic Guides. Oxford University Press, 2001.

[8] S. French and D. Krause. Identity in Physics: A Historical, Philosophical,
and Formal Analysis. Oxford University Press, 2006.

[9] Robert Ian Goldblatt. Semantic analysis of orthologic. Journal of Philo-
sophical Logic, 3(1):19–35, 1974. DOI: 10.1007/BF00652069

[10] Gary M. Hardegree. An axiom system for orthomodular quantum logic.
Studia Logica, 40(1):1–12, 1981. DOI: 10.1007/BF01837551

[11] Jacek Malinowski. The deduction theorem for quantum logic – some neg-
ative results. The Journal of Symbolic Logic, 55(2):615–625, 1990. DOI:
10.2307/2274651
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Truncation in Hahn Fields is Undecidable and Wild

Santiago Camacho

Abstract

We show that in any nontrivial Hahn field(a field of generalized power
series) with truncation as a primitive operation we can interpret the
monadic second-order logic of the additive monoid of natural numbers
and the theory of such structure is undecidable. We also specify a de-
finable binary relation on such a structure that has SOP(the strict order
property) and TP2(the tree property of the second kind).

Keywords: Hahn Fields, Truncation, undecidability, independence property,
tree property of the second kind.

Introduction

Generalized series have been used in the past few decades in order to generalize
classical asymptotic series expansions such as Laurent series and Puiseux series.
Certain generalized series fields, such as the field of Logarithmic-Exponential
Series [2], provide for a richer ambient structure, due to the fact that these
series are closed under many common algebraic and analytic operations. In the
context of generalized series the notion of truncation becomes an interesting
subject of study. In the classical cases, a proper truncation of any Laurent
series

∑
k≥k0 rkx

k amounts to a polynomial in the variables x and x−1. In
the general setting a proper truncation of an infinite series can still be an
infinite series. It has been shown by various authors [1, 3, 5] that truncation
is a robust notion, in the sense that certain natural extensions of truncation
closed sets and rings remain truncation closed. We here look at some first-
order model theoretic properties of the theory of a Hahn Field equipped with
truncation. We show that such theories are very wild in the sense that they can
even interpret the theory of (N; +,×) via the interpretation of (N,P(N); +,∈),
and are thus undecidable, solving a question posed by van den Dries. We also
indicate definable binary relations with “bad” properties such as the strict order
property and the tree property of the second kind. In section 1 we introduce



40 S. Camacho

the preliminaries of Hahn series and valued fields. In section 2 we recall the
result of the undecidability of (N,P(N); +,∈) via the more familiar result of
undecidability for (N; +,×). The author would like to thank Philipp Hieronymi
and Erik Walsberg for bringing the bibliography of monadic second-order logic
to his attention.

Notations

We let m and n range over N = {0, 1, . . .}. For a set S, we denote its powerset
by P(S). Given a set S, and a tuple of variables x we write Sx for the cartesian
product S|x| where |x| denotes the length of the tuple x. Given a language L,
an L-formula φ(x), and an L-structureM = (M ; . . .) we let φ(Mx) denote the
set {a ∈Mx :M |= φ(a)}. For a field K we let K× = K \ {0}.

1 Preliminaries

Hahn Series

Let Γ be an additive ordered abelian group. Let k be a field. We indicate a
function f : Γ → k suggestively as a series f =

∑
γ∈Γ fγt

γ where fγ = f(γ)
and t is a symbol, and let supp(f) := {γ ∈ Γ : fγ 6= 0} be the support of f .
We denote the Hahn series field over k with value group Γ by

k((tΓ)) :=

f =
∑
γ∈Γ

fγt
γ : supp(f) is well-ordered

 ,

equipped with the usual operations of addition, and multiplication, that is with
α, β, γ ranging over Γ:

f + g =

(∑
γ

fγt
γ

)
+

(∑
γ

gγt
γ

)
=
∑
γ

(fγ + gγ) tγ ,

fg =

(∑
γ

fγt
γ

)(∑
γ

gγt
γ

)
=
∑
γ

 ∑
α+β=γ

fαgβ

 tγ .

Let f =
∑

γ fγt
γ be in k((tΓ)) and δ ∈ Γ. The truncation of f at δ is∑

γ<δ fγt
γ and we shall denote it by f |δ. We call f purely infinite, bounded,

infinitesimal if supp(f) ⊆ Γ<0, supp(f) ⊆ Γ≥0, supp(f) ⊆ Γ>0, respectively.
We will distinctly name three components of f : the purely infinite part f |0,
the bounded part f4 := f − f |0, and the infinitesimal part f≺ := f − f4,
so f = f |0 + f4, f4 = f0 + f≺



Truncation in Hahn Fields is Undecidable and Wild 41

2 Valued Fields

A valued field is a field K equipped with a surjective map v : K → Γ∪ {∞},
where Γ is an additive ordered abelian group, such that for all f, g ∈ K we
have

(V0) v(f) =∞ ⇐⇒ f = 0,

(V1) v(fg) = v(f) + v(g),

(V2) v(f + g) ≥ min{v(f), v(g)}

Every valued field gives rise to:

1. The valuation ring O := {f ∈ K : v(f) ≥ 0}, which is a local ring,

2. the maximal ideal O := {f ∈ K : v(f) > 0} of O, and

3. the residue field k := O/O of K.

Example 2.1 The canonical valuation on k((tΓ)) is given by the map v :
k((tΓ))× → Γ where v(f) = min(supp(f)). We then observe that the corre-
sponding valuation ring consists of the bounded elements of k((tΓ)), the maxi-
mal ideal of the valuation ring consists of the infinitesimal elements of k((tΓ))
and the residue field is isomorphic to k.

Other Structures in valued fields

A monomial group M of a valued field K is a multiplicative subgroup of K×

such that for every γ ∈ Γ there is a unique element m ∈M such that v(m) = γ.

Example 2.2 Let K = k((tΓ)). Then the canonical monomial group of
K is the set {tγ : γ ∈ Γ}.

An additive complement to the valuation ring O of a valued field K is
an additive subgroup V of K such that K = V ⊕O

Example 2.3 Let K = k((tΓ)). Then the canonical additive complement
for K is the set of purely infinite elements of K.

3 The natural numbers

We start with the following well known result.

Theorem 3.1 The theory of (N; +,×) is undecidable.
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Monadic Second-Order Logic

Given a structureM = (M ; . . .), monadic second-order logic of M extends
first-order logic over M by allowing quantification of subsets of M . More
precisely it amounts to considering the two-sorted structure (M,P(M); . . . ,∈),
where ∈⊆M×P(M) has the usual interpretation. The following Theorem and
its proof appear in [4].

Theorem 3.2 The theory of (N,P(N);∈) is decidable.

Lemma 3.3 Multiplication on N is definable in (N,P(N); +,∈).

Proof. If the multiplication of consecutive numbers is defined, then general
multiplication of two natural numbers can be defined in terms of addition:

n = mk ⇐⇒ (m+ k)(m+ k + 1) = m(m+ 1) + k(k + 1) + n+ n.

If divisibility is defined, then multiplication of consecutive numbers is defined
by

n = m(m+ 1) ⇐⇒ ∀k(∈ N)(n|k ↔ [m|k ∧ (m+ 1)|k]).

Divisibility can be defined using addition by

m|n ⇐⇒ ∀S(∈ P(N))(0 ∈ S ∧ ∀x(∈ N)(x ∈ S → x+m ∈ S)→ n ∈ S).

Since addition is a primitive, multiplication is defined in (N,P(N); +,∈). �

Corollary 3.4 The theory of (N,P(N); +,∈) is undecidable.

Proof. This follows from Lemma 3.3 and Theorem 3.1. �

4 Hahn Fields with Truncation

Let K = k((tΓ)) be a Hahn field with non-trivial value group Γ. We consider
K as an L-structure where L = {0, 1,+,×,O,M, V }, and the unary predicate
symbols M,O, and V are interpreted respectively as the canonical monomial
group tΓ, the valuation ring, and the canonical additive complement to O. For
γ ∈ Γ and m = tγ we set f |m := f |γ . Then we have the equivalence (for f , v
∈ K)

f |1 = v ⇐⇒ v ∈ V & ∃g ∈ O(f = v + g),
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showing that truncation at 1 is definable in the L-structure K. For m ∈ tΓ and
f ∈ K we have

f |m = g ⇐⇒ (m−1f)|0 = m−1g,

showing that the operation (f,m) 7→ f |m : K × tΓ → K is definable in the
L-structure K.

For convenience of notation we introduce the asymptotic relations 4,≺,
and � on K as follows. For f, g ∈ K, f 4 g if and only if there is h ∈ O such
that f = gh, likewise f ≺ g if and only if f 4 g and g 64 f , and f � g if and
only if f 4 g and g 4 f . Let R := {(m, f) ∈ tΓ ×K : m ∈ tsupp(f)}. Then R is
definable in the L-structure K since for a, b ∈ K

(a, b) ∈ R ⇐⇒ a ∈ tΓ and b− b|a � a.

Theorem 4.1 The L-structure K interprets (N,P(N); +,∈).

Proof. Let ≈ be the definable equivalence relation on K such that f ≈ g,
for f, g ∈ K, if and only if supp(f) = supp(g). Take n ∈ tΓ such that n ≺ 1.
Consider the element f =

∑
n n

n ∈ K, and the set S = {g ∈ K : supp(g) ⊆
supp(f)}. Let E ⊆ tsupp(f) × (S/≈) be given by

(m, g/≈) ∈ E :⇐⇒ m ∈ tsupp(g),

and note that E is definable in the L-structure K since R is. Define ι : N →
tsupp(f) by ι(n) = mn, and note that ι induces an isomorphism

(N,P(N);∈)
∼−→ (tsupp(f), S/≈;E),

such that ι(m+ n) = ι(m)ι(n). �

Corollary 4.2 The theory of the L-structure K is undecidable.

Proof. This follows easily from Theorem 4.1 and Theorem 3.4 �

Defining the coefficient field k

We now considerK = k(tΓ)) as an L−-structure, where L− = {0, 1,+,×,O, V }.
Note that for f ∈ O we have

fV ⊆ V ⇐⇒ f ∈ k,

where we identify k with kt0. Thus we can define the coefficient field k in the
L−-structure K.
Question: Is it possible to define the monomial group tΓ in the L′-structure
K?
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An approach without the monomial group

Alternatively we may work in the setting of the two sorted structure (K,Γ; v, T )
where K denotes the underlying field, Γ is the ordered value group, v is the
valuation, and T : K × Γ→ K is such that T (f, γ) = f |γ . Then we can define
the binary relation R ⊆ Γ×K by

(γ, f) ∈ R :⇐⇒ v(f − T (f, γ)) = γ.

We then obtain the following;

Theorem 4.3 The two-sorted structure (K,Γ; v, T ) interprets (N,P(N); +,∈).

The proof is similar to the proof of Theorem 4.1.

Corollary 4.4 The theory of the two-sorted structure (K,Γ; v, T ) is undecid-
able.

5 Dividing lines in model theoretic structures

We have already shown how (N; +,×) can be interpreted in the L-structure K
and thus we know that it has the strict order property and the tree property
of the second kind among others. In this section we make explicit a binary
relation that witnesses these properties inside K.

The independence property

Let L be a language and M = (M ; . . .) an L-structure. We say that an L-
formula φ(x; y) shatters a set A ⊆ Mx if for every subset S of A there is
bS ∈ My such that for every a ∈ A we have that M |= φ(a; bS) if and only
if a ∈ S. Let T be an L-theory. We say that φ(x; y) has the independence
property with respect to T , or IP for short, if there is a model M of T ,
such that φ(x; y) shatters an infinite subset of Mx.

For a partitioned formula φ(x; y) we let φopp(y;x) = φ(x; y), that is, φopp

is the same formula φ but where the role of the parameter variables and type
variables is exchanged.

Lemma 5.1 A formula φ(x; y) has IP if φopp has IP.

Proof. By compactness the formula φ(x; y) shatters some set {aJ : J ∈
P(N)}. Let the shattering be witnessed by {bI : I ⊆ P(N)}. Let B = {bIi : i ∈
N} be such that Ii = {Y ⊆ N : i ∈ Y }. Then we have

|= φ(aJ , bIi) ⇐⇒ i ∈ J,

and thus φopp shatters B. �
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The Strict Order Property

We say that a formula φ(x; y) has the Strict Order Property, or SOP for short,
if there are bi ∈ My, for i ∈ N, such that φ(Mx, bi) ⊂ φ(Mx, bj) whenever
i < j.

Proposition 5.2 The formula ϕ(x; y), defining the relation R as in section 4,
has SOP.

Proof. Let Θ = {θi : i ∈ N} be any subset of Γ such that θi < θj for i < j,
and consider the set {fn =

∑n
i=0 t

θi : i ∈ N}. Note that ϕ(K, fm) ⊂ ϕ(K, fn)
for m < n. �

The tree property of the second kind

We say that a formula φ(x; y) has the tree property of the second kind,
or TP2 for short, if there are tuples bij ∈ My, for i, j ∈ N, such that for any

σ : N→ N the set {φ(x; biσ(i)) : i ∈ N} is consistent and for any i and j 6= k we

have {φ(x; bij), φ(x; bik)} is inconsistent.

Lemma 5.3 If φ(x; y) has TP2 then φ has IP.

Proof. Let {φ(x, bij)}i,j∈N witness TP2 for φ(x; y). Fix j. Without loss of

generality we will assume that j = 0. Consider the set {bi0}. Let I ⊆ N. By
TP2 there is aI ∈Mx such that

M |= φ(aI ; b
i
j) ⇐⇒ (i ∈ I and j = 0, or i /∈ I and j = 1).

Thus by Lemma 5.1 φ(x; y) has IP. �

Lemma 5.4 Let A = {ai : i ∈ N} ⊆ Mx and B = {bI : I ∈ P(N)} ⊆ My.
Assume that there is φ(x; y) such that for any fixed bI ∈ B

|= φ(a; bI) ⇐⇒ there is i ∈ I such that a = ai.

Then φ has TP2.

Proof. Let φ, A, and B be as in the hypothesis of the Lemma. Let P =
{pi ∈ N} be the set of primes where pi 6= pj for i 6= j. We construct Aij ⊆ N
recursively as follows:

• A0
j := {pn0

j : n0 > 0}
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• Aij := {pmni : ni ∈ N, m ∈ Ai−1
j }.

So for example A1
2 = {pp

n0
2
n1 : n1, n0 > 0}.

Claim 1 For α ∈ Nn we have that
⋂
i<nA

i
α(i) 6= ∅.

It is not hard to check that

p
...

pα(n−1)

α(0) ∈
⋂
i<n

Aiα(i).

Claim 2: For fixed i, and j 6= k we have Aij ∩Aik = ∅.
For simplicity in notation we prove the case where i = 1. Let m ∈ A1

j ∩ A1
k.

Then m = p
p
m0
j
m1 = p

p
n0
k
n1 . Since pm0

j and pn0
k are non-zero, we have that pm1 =

pn1 , and thus pm0
j = pn0

k . Similarly, since m0 and n0 are non-zero we conclude
that pj = pk, and thus j = k.

Now let bij = bAij
. By compactness, together with Claim 1, we get that the

set {φ(x; biσ(i)) : i ∈ N} is consistent. By the hypothesis of the Lemma, together

with claim 2, we get that for any i and j 6= k we have {φ(x; bij), φ(x; bik)} is
inconsistent. �

If φ(x; y) and A are as in the lemma, we say that φ(x; y) and B only shatter
A in M . Note that in this case A is in fact a definable set.

Proposition 5.5 The formula ϕ(x; y), defining the relation R as in section 4,
has TP2.

Proof. Let Θ be a well-ordered subset of Γ and consider the sets

tΘ = {tθ : θ ∈ Θ}, and B =

{∑
δ∈∆

tδ : ∆ ⊆ Θ

}
.

It is clear then that ϕ(x; y) and B only shatter tΘ, and thus by Lemma 5.4 the
formula ϕ(x; y) has TP2. �

Corollary 5.6 The formula ϕ(x; y), defining the relation R as in section 4,
has IP.

Proof. The result follows directly from proposition 5.5 and lemma 5.3. �
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A First-Order Modal Theodicy: God, Evil, and
Religious Determinism

Gesiel Borges da Silva and Fábio Maia Bertato

Abstract

Edward Nieznański developed in 2007 and 2008 two different systems
in formal logic which deal with the problem of evil [11, 12]. Particularly,
his aim is to refute a version of the logical problem of evil associated with
a form of religious determinism. In this paper, we revisit his first system
to give a more suitable form to it, reformulating it in first-order modal
logic. The new resulting system, called N1, has much of the original
basic structure, and many axioms, definitions, and theorems still remain;
however, some new results are obtained. If the conclusions attained are
correct and true, then N1 solves the problem of evil through the refu-
tation of a version of religious determinism, showing that the attributes
of God in Classical Theism, namely, those of omniscience, omnipotence,
infallibility, and omnibenevolence, when adequately formalized, are con-
sistent with the existence of evil in the world. We consider that N1 is a
good example of how formal systems can be applied in solving interesting
philosophical issues, particularly in Philosophy of Religion and Analytic
Theology, establishing bridges between such disciplines.

Keywords: Logical Problem of Evil, theodicy, formal theodicy, first-order
modal logic, determinism, religious determinism.

Introduction

The problem of evil is one of the most famous issues in the history of philosophy.
Among its formulations, David Hume’s is one of the most famous. It states
that the existence of God is in some sense incompatible with the existence of
evil in the world. In his work Dialogues concerning natural religion, Hume
makes the following considerations about God and His attributes:

“Epicurus’ old questions are yet unanswered. Is he willing to pre-
vent evil, but not able? then is he impotent. Is he able, but not
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willing? then is he malevolent. Is he both able and willing? Whence
then is evil?”1

Although scathing, Hume’s allegation was not strong sufficiently to bring
an effective trouble to theists’ belief in God. As Alvin Plantinga affirms, it is
not enough to put difficult questions to theism; the challenger should try to
show that it is irrational to believe both in God and that evil exists in the
world (cf. [13, p. 11]). In this direction, the philosopher John Mackie stated
a version of the problem that now is known as the Logical Problem of Evil.
Mackie says that theistic belief is positively irrational, for it is contradictory :

“I think, however, that a more telling criticism can be made by way
of the traditional problem of evil. Here it can be shown, not that
religious beliefs lack rational support, but that they are positively
irrational, that the several parts of the essential theological doctrine
are inconsistent with one another.” [9, p. 200.]

In other words, this challenge to theism is a problem of consistency between
the existence of God and the existence of evil; it is a problem within the
framework of classical logic. Many solutions were proposed to the Logical
Problem of Evil, and among those, Plantinga’s is the most famous. We will
not explore his answer, and we do not put in question the merits of a Free Will
Defense as a response to the problem. Anyway, even if it is correct, there are
other correlate challenges to deal with. For instance, one could agree that the
Free Will Defense is enough to deal with the questions raised by Mackie, but
think that to have a theodicy, a stronger response to the Logical Problem of
Evil, would be even better than a Defense as a philosophical response.2

Other questions regarding the Logical Problem of Evil are still relevant
and can be more deeply explored. One of them is the question regarding the
logical consistency between divine attributes like omnipotence and omniscience
and the existence of evil. Regarding this, one can simply use the apparatus of
Formal Logic, formalizing sentences like the attributes of God or the relation
between God and the situations in the world, developing proofs and deducing
rigorous results. These results, hopefully, can clarify the problem, solving
ambiguities and exposing or demising contradictions through adequate tools
provided by the vast field of Formal Logic.

Such a task is contemplated by the “Formal Theodicies” developed by the
Polish philosopher and logician Edward Nieznański [11, 12]. He exposes in the

1[8, part 10, 23]
2Maybe Mackie had this in mind when recognized that Plantinga’s solution dealt with

his objections to theism, but still puts in question the character of his response as a “real
solution” (cf. [1]).
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abstract of his 2007 work his project of establishing a theodicy, that aims to
show that the existence of God is logically compatible with the existence of
evil:

“The author of the article uses St. Thomas Aquinas’ and G.W.
Leibniz’s philosophical inspirations to demonstrate by means of
formal-logical means [sic] that inferring non-existence of evil from
existence of God, as well as non-existence of God from existence of
evil is a logical error.” [11, p. 217.]

One way by which one can address the Problem of Evil is the following:
it is contradictory to believe in the existence of the God of Classical Theism
and in the existence of evil. God is omnipotent and omniscient, so one can
assume that everything that happens is due to God’s will. In other words,
“if a situation is the case, then God wills such a situation to be the case”,
a determinist could argue.3 This means that, if a situation is evil, then God
wills such an evil situation, and this would contradict his omnibenevolence. To
give an answer to such a determinism is the main concern of Nieznański in his
papers, and is also ours here.

Let p denote a possible situation in the world, P (p) denote “p is the case”,
and Cθ denote “God wills”, then, this claim can be formalized in the following
way:

(DET1) ∀p(P (p)→ CθP (p))

(If a situation is the case, then God wills such a situation to be the case.)

Another determinist claim can be stated as follows: “if God knows that
a situation is the case, then God wills such a situation to be the case”. The
relation between knowledge and will is more intricate in this claim; but perhaps,
it is at least conceivable that if God knows a situation, but did not act in
order to avoid it, it is because He willed it, for He is omnipotent. Thus, the
proposition above requires an answer.

If Wθ denotes “God knows”, and the other symbols are interpreted as
before, it is possible to formalize such a claim as follows:

(DET2) ∀p(WθP (p)→ CθP (p))

(If God knows that a situation is the case, then God wills such a situation to
be the case.)

3By “situation” we mean a certain configuration of elements.
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Originally, Nieznański developed two different approaches that aim at deny-
ing such religious determinism related to the Logical Problem of Evil. In order
to do this, in both systems, Nieznański states the “constitutive properties of
God”, in which the attributes of omniscience, infallibility, and omnipotence are
formally described, as well as some other attitudes of God regarding situations.
Then, he develops a formal axiology relating good, evil, and neutral situations
to finally deal with versions of DET1 and DET2.

However, although Nieznański’s philosophical insights are penetrating and
inventive, and his general methodology of formalization is very inspiring, some
issues led us to revisit his first system [11] proposing some changes. Such
changes can be summarized as follows: we proceed first by reestablishing the
formal language to one that is logically more adequate according to our vision,
defining it in first-order modal logic, as well as establishing the metalanguage,
the rules of inference and other related features. Then, we define a new set of
axioms schemes, many of them inspired in the work of Nieznański, but with
a new formulation, to finally prove some theorems. Thus, the new resulting
system, called N1, has much of the original basic structure, and many axioms,
definitions and theorems still remain in a reformulate way; but, some new re-
sults are obtained. If the conclusions attained by N1 are correct and true, then
this system solves the problem of evil regarding religious determinism, showing
that the attributes of God in Classical Theism, namely, those of omniscience,
omnipotence, infallibility, and omnibenevolence, when adequately formalized,
are logically compatible with the existence of evil in the world. We hope that it
serves, as well, as a first presentation of some of Nieznański’s insights published
originally in Polish to a wider audience.

1 The system N1: language, rules, and axioms

The adaptation we make here from the system proposed by Nieznański is hence-
forward called N1. The basis of this system is a First-Order Modal Logic, i.e.,
a First-Order Classical Logic with the addition of two modal operators, Wθ

and Cθ.4 The language LN1 of N1 has the following symbols as primitives:

(i) Unary predicate symbols: B,P, d, z, n;
(ii) A binary predicate symbol: Op;
(iii) A symbol of constant (a distinguished element): θ;
(iv) Variables for situations: p, q, r, possibly with indexes;

4Among the works consulted are: the book written by Walter Carnielli and Claudio Pizzi
about Modal Logics and Modalities [3], the widely-known introductory book of George Hughes
and Max Cresswell on Modal Logic, specially chapter 13 [7], and Fitting and Mendelsohn’s
book on First-Order Modal Logic [5].
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(v) The symbols for connectives: ¬,→;
(vi) The symbol of universal operator: ∀;
(vii) Two symbols for specific modal operators: Cθ,Wθ.

The definition of a well-formed formula (abbreviated as wff ) and the em-
ploy of parentheses is the usual, with the expected extensions. The formation
rules are the following:

(FR1) Any sequence of symbols consisting of an n-ary predicate followed by
n individual variables is a wff.
(FR2) If φ is a wff, so are ¬φ, Wθφ, and Cθφ.
(FR3) If φ and ψ are wff, so is (φ→ ψ).
(FR4) If φ is a wff and v is a variable that stands for situations, then ∀vφ(v)
is a wff.

Some rules of deduction of N1 are: Modus Ponens (MP), Uniform Substi-
tution (US), Rule of Necessitation (Nec) and Substitution of Equivalents (Eq).
They are stated below:5

(MP) φ, φ→ ψ `N1 ψ.
(US) [7, p. 25] The result of uniformly replacing any variable or variables
v1, ..., vn in a theorem by any wff φ1, ..., φn, respectively, is itself a theorem.
(Nec) If `N1 φ, then `N1 Wθφ and `N1 Cθφ.
(Eq) [7, p. 32] If φ is a theorem and ψ differs from φ in having some wff δ as
a subformula at one or more places where φ has a wff γ as a subformula, then
if γ ↔ δ is a theorem, ψ is also a theorem.

The Deduction Theorem (DT) is valid in the system:

Theorem 1 (Deduction Theorem). If φ,Γ `N1 ψ, then Γ `N1 φ→ ψ.6

Other symbols of the language are defined as follows (φ and ψ are wff s):

Def. 1. ∃vφ :↔ ¬∀v¬φ

Def. 2. (φ↔ ψ) :↔ (φ→ ψ) ∧ (ψ → φ)

Def. 3. (φ ∨ ψ) :↔ (¬φ→ ψ)

5Not all the rules presented here are used to prove the theorems of this paper, but by
listing them we make explicit what is the modal characterization of our system.

6Hakli and Negri establish the conditions for using this theorem in modal logic: through
defining a formal notion of derivation from assumptions, it is possible to prove the theorem
for modal logics as stated above (cf. [6, p. 859-861]).
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Def. 4. (φ ∧ ψ) :↔ ¬(φ→ ¬ψ)

We will use the following convention:

α(p) stands for any wff that involves only the variable p, where p is free;

Thus, we will refer to a wff α that involves only a particular situation p
as the ‘state of affairs’ α(p). We use the term ‘state of affairs’ here to indicate
circumstances (possibly a fact) about a given situation.7 So, any situation
denoted by p is such that there are many states of affairs involving it. For
instance, the formula α(p) ≡ P (p) ∧ ¬P (p) represents a state of affairs that
does not occur, for it is contradictory.

For ease of reading, we have included in parentheses the standard inter-
pretations for each wff. The following shall be considered as abbreviations or
standard semantics in natural language:

θ := ‘God’;
P (p) := ‘p is the case’;8

B(θ) := ‘θ is divine’.
d(p) := ‘p is good’;
z(p) := ‘p is evil’;
n(p) := ‘p is neutral’;
K(p) := ‘p is contingent’;
Op(p, q) := ‘p is opposed to q’;9

Cθα(p) := ‘God wills the state of affairs α(p)’;
Wθα(p) := ‘God knows the state of affairs α(p)’.

As usual, all theorems, rules, and laws of Propositional Calculus are axioms,
rules, and laws in our system, respectively. The abbreviation PC denotes steps
in proofs that are based on rules and laws in Propositional Calculus; and the
abbreviation PC-Theorem is used whenever a valid PC-schema is evoked.

7Naturally, those possible facts that are expressible in the language of N1.
8We do not need to assume here that ‘to be the case’, is the same as ‘to be actual’. To

say that ‘p is the case’ can be considered closer to ‘p occurs’ or to ‘p has correspondence in
reality’ in a given considered world.

9We consider that two situations are opposite if they are contrary, that is, two opposite
situations may at the same time both not be the case, but cannot at the same time both
be the case. It will not be necessary here, but accordingly, we could assume as axioms to
regulate Op the following formulas:

∀p∀q(Op(p, q) ↔ Op(q, p))
∀p∀q(Op(p, q) → (P (p) → ¬P (q))).
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Thus, we present below the proper axioms of N1.10

The first axiom establishes that the distinguished element θ satisfies the
primitive predicate B:

A1. B(θ)

(God is divine.)

The second axiom corresponds to a quantification over the well known
Axiom 4 of alethic modal logic, that characterizes the system S4, where the
operator � is substituted by Cθ.

A2. ∀p(Cθα(p)→ CθCθα(p))

(For all situations, if God wills a state of affairs, then He wills to will such a
state of affairs.)

The following axiom is, similarly, associated with the formula 5, the char-
acteristic axiom schema of S5 system. One can see easily that there is an
analogy between ♦, the operator of possibility in alethic modal logic, and Dθ,
the operator of permission in N1:

A3. ∀p(Dθα(p)→ CθDθα(p))

(For all situations, if God permits a state of affairs, then He wills to permit
such a state of affairs.)

Another axiom here establishes something relevant, and easy to assume,
in the context of the Logical Problem of Evil, i.e., that not all situations are
good:

A4. ¬∀p(P (p)→ d(p))

(Not all the situations that are the case are good.)

Next, we introduce three axioms in order to regulate the axiology of our sys-
tem. The following axiom aims at capturing the attribute of omnibenevolence
of God:

A5. ∀p(CθP (p)↔ d(p))

(For all situations, God wills a situation to be the case iff the situation is good.)

The next axiom is one that relates good to evil situations:

10For simplicity, we will call simply axioms to both axioms properly speaking and axiom
schemes.
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A6. ∀p(z(p)→ ¬d(p))

(For all situations, if a situation is evil, then it is not good.)

In order to establish the relation between good and evil situations, when
they are opposite, we assume the following axiom:

A7. ∀p∀q(Op(p, q)→ (d(p)↔ z(q)))

(For all situations, if two situations are opposite, then if one is good, the other
is evil.)

The following axioms A8 and A9 introduce relations between will, opposi-
tion, and permission of God regarding states of affairs:

A8. ∀p(Sθα(p)↔ Cθ¬α(p))

(For all situations, God opposes a state of affairs iff He wills the opposite.)

A9. ∀p(Dθα(p)↔ ¬Sθα(p))

(For all situations, God permits a state of affairs iff He does not oppose to it.)

The next axiom states the relation between the opposition of God and
neutral situations. Intuitively, a situation is neutral iff God does not will it
and is not opposed to it. Therefore, if God is opposed to a situation, we can
assume that such a situation is not neutral.

A10. ∀p(SθP (p)→ ¬n(p))

(For all situations, if God opposes a situation to be the case, then the situation
is not neutral.)

Thus, each situation admits one of three possible axiological values. In this
sense, the next axiom establishes that neutral situations are neither good nor
evil.

A11. ∀p(n(p)↔ (¬d(p) ∧ ¬z(p)))

(For all situations, a situation is neutral iff it is neither good nor evil.)

The system N1 has eleven axioms. The axiom A1 establishes that our
distinguished element θ (‘God’) is divine. The axioms A2 and A3 govern the
iteration and the composition of the operators Cθ and Dθ, which clearly shows
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a modal character. The axiom A4 guarantees that there is at least one evil
situation. The axiom A5 expresses that the will of God is the criterion for
good. Axioms A6 and A7 provide a type of opposition between good and evil.
Axioms A8 and A9 establish relations between the will and the opposition of
God, and between the permission and the opposition of God with respect to
states of affairs, while A10 establishes the relation between the opposition of
God and neutral situations. Finally, the axiom A11 establishes that a situation
is neutral iff such a situation is neither good nor evil.

In the following, we will give precise definitions of the divine attributes and
deduce a series of theorems relevant to the solution of the Logical Problem of
Evil and the constitution of a formal theodicy.

2 The attributes of God

The following definitions delineate some attributes of the God of Classical
Theism and are essential to the understanding and discussion of the Logical
Problem of Evil: omniscience, infallibility, and omnipotence.

Def. 5 (Omniscience of God). WW :↔ ∀p(α(p)→Wθα(p))

(God is omniscient iff for all situations, if a state of affairs is the case, then
God knows it.)

Def. 6 (Infallibility of God). NM :↔ ∀p(Wθα(p)→ α(p))

(God is infallible iff, for all situations, if God knows a state of affairs, then it
is the case.)

Def. 7 (Omnipotence of God). WM :↔ ∀p(Cθα(p)→ α(p))

(God is omnipotent iff, for all situations, if God wills a state of affairs, then it
is the case.)

Such definitions try to capture the historical conceptions and intuitions of
the great religions that helped to shape an entire concept apparatus for the
Classical Theism. It is not difficult to find foundations in such a religious
and philosophical traditions to support such definitions, but we do not assign
ourselves to such a task here.

The following definition sets what means to be ‘divine’ in the context of
the system N1, according to our standard interpretation:

Def. 8 (God). B(θ) :↔WW ∧NM ∧WM

(God is divine iff He is omniscient, infallible, and omnipotent.)

As God satisfies the predicate of divinity, we have theorem T1:
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T1. WW ∧NM ∧WM

(God is omniscient, infallible, and omnipotent.)

Proof.
1. B(θ) [A1]
2. B(θ) :↔WW ∧NM ∧WM [Def. 8]
3. WW ∧NM ∧WM [MP, 1, 2]

Theorems T2, T3, and T4 are also easily deduced from T1, and describe
extensively God’s attitudes regarding states of affairs. As Nieznański observes
about the corresponding theorems in his system, theorems T2 and T3 formalize
a fact that is in agreement with the observation of Thomas Aquinas, who says
that “God knows all things whatsoever that in any way are” [11, p. 204].11

T2. ∀p(α(p)→Wθα(p))

(For all situations, if a state of affairs is the case, then God knows it.)

T3. ∀p(Wθα(p)→ α(p))

(For all situations, if God knows a state of affairs, then it is the case.)

Theorems T2 and T3 establish the correspondence between the knowing
of God and the states of affairs that are the case. Every state of affairs that
God knows is the case and, conversely, if a state of affairs is the case, then
God knows it. Theorem T4, on the other hand, deals with another relevant
attribute here: the omnipotence of God, related with what God wills:

T4. ∀p(Cθα(p)→ α(p))

(For all situations, if God wills a state of affairs, then it is the case.)

The following theorem states that God cannot will contradictions. This
follows immediately from the underlying Classical Logic.

T5. ¬∃p(Cθ(α(p) ∧ ¬α(p)))

(There is no situation such that God wills some contradiction.)

11“Deus scit omnia quaecumque sunt quocumque modo” (Thomas Aquinas, Summa The-
ologiae, I, q. 14, a. 9 co.).
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Proof.
1. Cθ(α(p) ∧ ¬α(p))→ (α(p) ∧ ¬α(p))) [T4, α(p)/(α(p) ∧ ¬α(p)), Spec]
2. ¬(α(p) ∧ ¬α(p))→ ¬Cθ(α(p) ∧ ¬α(p)) [PC, 1]
3. ¬(α(p) ∧ ¬α(p)) [PC-Theorem]
4. ¬Cθ(α(p) ∧ ¬α(p)) [MP, 2, 3]
5. ∀p¬Cθ(α(p) ∧ ¬α(p)) [Gen, 4]
6. ¬∃pCθ(α(p) ∧ ¬α(p)) [PC, 5]

It is easy to see that T5 could be derived using just the theorem stated
in line 3 of the proof above and Necessitation Rule (Nec). The same thing
could be made with the operator Wθ: God cannot know contradictory states
of affairs.

The following definition states what it means for God to be coherent re-
garding a situation, and T6 states another result about the will of God:

Def. 9 (Coherence). coherentθ(p) :↔ (Cθα(p)→ ¬Cθ¬α(p))

(God is said to be “coherent with Himself regarding a situation” whenever the
following occurs: if He wills a state of affairs involving that situation, then He
does not will the opposite.)

T6. ∀p(Cθα(p)→ ¬Cθ¬α(p))

(For all situations, if God wills a state of affairs, then it is not the case that
He wills the opposite.)

Proof.
1. Cθ¬α(p)→ ¬α(p) [T4, α(p)/¬α(p), Spec]
2. ¬¬α(p)→ ¬Cθ¬α(p) [PC, 1]
3. α(p)→ ¬Cθ¬α(p) [PC, 2]
4. Cθα(p)→ α(p) [T4, Spec]
5. Cθα(p)→ ¬Cθ¬α(p) [PC, 4, 3]
6. ∀p(Cθα(p)→ ¬Cθ¬α(p)) [Gen, 4]

By definition, it follows from T6:

T7. ∀p(coherentθ(p))

(Regarding all situations, God is coherent with Himself.)



60 G. B. da Silva and F. M. Bertato

Proof.
1. Cθα(p)→ ¬Cθ¬α(p) [T6, Spec.]
2. coherentθ(p) [Def. 9, 1]
3. ∀p(coherentθ(p)) [Gen, 2]

Next, some theorems are stated in order to explore the relations between
“attitudes” of God towards states of affairs.

T8. ∀p(Sθα(p)↔ ¬Dθα(p))

(For all situations, God is opposed to a state of affairs iff He does not permits
it.)

Proof.
1. Dθα(p)↔ ¬Sθα(p) [A9, Spec.]
2. ¬Dθα(p)↔ Sθα(p) [PC]
3. ∀p(Sθα(p)↔ ¬Dθα(p)) [PC, Gen, 2]

The theorem below states the relation between Cθ and Dθ:

T9. ∀p(Dθα(p)↔ ¬Cθ¬α(p))

(For all situations, God permits a state of affairs iff He does not will the
opposite.)

Proof.
1. Sθα(p)↔ Cθ¬α(p) [A8, Spec]
2. Sθα(p)↔ ¬Dθα(p) [T8, Spec]
3. Dθα(p)↔ ¬Cθ¬α(p) [PC, 1, 2]
4. ∀p(Dθα(p)↔ ¬Cθ¬α(p)) [Gen, 3]

From T9 it is easy to recognize the analogy between alethic modal operators
� and ♦ and N1 modal operators Cθ and Dθ, respectively. It becomes also
clear that T6 is linked to formula D, the axiom that characterizes the KD
modal system; in terms of the equivalence stated in T9, T6 can be written as
∀p(Cθα(p)→ Dθα(p)).

It is easy to see that the following theorems can be deduced from T9:

T9.1 ∀p(¬Dθα(p)↔ Cθ¬α(p))

T9.2 ∀p(Dθ¬α(p)↔ ¬Cθα(p))
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T9.3 ∀p(¬Dθ¬α(p)↔ Cθα(p))

One more analogy between N1 and normal modal systems comes here: T10
below is related to the formula T♦, valid in KT modal logic. Furthermore, it
is philosophically meaningful, for it states the relation between the permission
of God and the states of affairs:

T10. ∀p(α(p)→ Dθα(p))

(For all situations, if a state of affairs is the case, then it is permitted by God.)

Proof.
1. Cθ¬α(p)→ ¬α(p) [T4, α(p)/¬α(p), Spec.]
2. Dθα(p)↔ ¬Cθ¬α(p) [T9, Spec]
3. α(p)→ Dθα(p) [PC, 1, 2]
4. ∀p(α(p)→ Dθα(p)) [Gen, 3]

Theorems T11 and T12, on the other hand, characterize the relation be-
tween God’s opposition regarding states of affairs:

T11. ∀p(Sθα(p)→ ¬α(p))

(For all situations, if God is opposed to a state of affairs, then such a state of
affairs is not the case.)

Proof.
1. Cθ¬α(p)→ ¬α(p) [T4, α(p)/¬α(p), Spec]
2. Sθα(p)↔ Cθ¬α(p) [A8, Spec]
3. Sθα(p)→ ¬α(p) [PC, 1, 2]
4. ∀p(Sθα(p)→ ¬α(p)) [Gen, 3]

T12. ∀p(Sθα(p)→ Dθ¬α(p))

(For all situations, if God is opposed to a state of affairs, then He permits the
opposite.)

Proof.
1. Sθα(p)→ ¬α(p) [T11, Spec]
2. ¬α(p)→ Dθ¬α(p) [T10, α(p)/¬α(p), Spec]
3. Sθα(p)→ Dθ¬α(p) [PC, 1, 2]
4. ∀p(Sθα(p)→ Dθ¬α(p)) [Gen, 3]
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Theorems from T13 to T23 state some inner relations between will, oppo-
sition, and permission of God regarding states of affairs.

T13. ∀p(CθCθα(p)↔ Cθα(p))

(God wills to will a state of affairs iff He wills such a state of affairs.)

Proof.
1. CθCθα(p)→ Cθα(p) [T4, α(p)/Cθα(p), Spec]
2. Cθα(p)→ CθCθα(p) [A2, Spec]
3. CθCθα(p)↔ Cθα(p) [PC, 1, 2]
4. ∀p(CθCθα(p)↔ Cθα(p)) [Gen, 3]

T14. ∀p(CθDθα(p)↔ Dθα(p))

(For all situations, God wills to permit a state of affairs iff He permits such a
state of affairs.)

Proof.
1. CθDθα(p)→ Dθα(p) [T4, α(p)/Dθα(p), Spec]
2. Dθα(p)→ CθDθα(p) [A3, Spec]
3. CθDθα(p)↔ Dθα(p) [PC, 1, 2]
3. ∀p(CθDθα(p)↔ Dθα(p)) [Gen, 3]

T15. ∀p(DθDθα(p)↔ Dθα(p))

(For all situations, God permits to permit a state of affairs iff He permits such
a state of affairs.)

Proof.
1. CθCθ¬α(p)↔ Cθ¬α(p) [T13, α(p)/¬α(p), Spec]
2. Dθα(p)↔ ¬Cθ¬α(p) [T9, Spec]
3. ¬Dθα(p)↔ Cθ¬α(p) [PC, 2]
4. Cθ¬Dθα(p)↔ ¬Dθα(p) [Eq, 3 in 1]
5. ¬DθDθα(p)↔ ¬Dθα(p) [Eq, 3 in 4]
6. DθDθα(p)↔ Dθα(p) [PC, 5]
7. ∀p(DθDθα(p)↔ Dθα(p)) [Gen, 6]
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The formula ∀p(Cθ(Cθα(p))→ Dθ(Dθα(p))) corresponds to a formula which
is originally an axiom in the system of Nieznański. It is easily demonstrated
from T6, A9, T13, and T15: 12

T16. ∀p(CθCθα(p)→ DθDθα(p))

(For all situations, if God wills to will a state of affairs, then God permits to
permit such a state of affairs.)

Proof.
1. Cθα(p)→ ¬Cθ¬α(p) [T6, Spec]
2. Dθα(p)↔ ¬Cθ¬α(p) [T9, Spec]
3. Cθα(p)→ Dθα(p) [Eq, 2 in 1]
4. CθCθα(p)↔ Cθα(p) [T13, Spec]
5. CθCθα(p)→ Dθα(p) [Eq, 4 in 3]
6. DθDθα(p)↔ Dθα(p) [T15, Spec]
7. CθCθα(p)→ DθDθα(p) [Eq, 6 in 5]
8. ∀p(CθCθα(p)→ DθDθα(p)) [Gen, 7]

T17. ∀p(DθCθα(p)↔ Cθα(p))

(For all situations, God permits to will a state of affairs iff He wills such a
state of affairs.)

Proof.
1. CθDθ¬α(p)↔ Dθ¬α(p) [T14, α(p)/¬α(p), Spec]
2. Dθ¬α(p)↔ ¬Cθα(p)) [T9.2, Spec]
3. Cθ¬Cθα↔ ¬Cθα [Eq, 2 in 1]
4. ¬DθCθα(p)↔ Cθ¬Cθα(p)) [T9.1, α(p)/Cθα(p), Spec]
5. ¬DθCθα(p)↔ ¬Cθα(p)) [Eq, 3 in 4]
6. DθCθα(p)↔ Cθα(p) [PC, 5]
7. ∀p(DθCθα(p)↔ Cθα(p)) [Gen, 6]

T18. ∀p(CθSθα(p)↔ Sθα(p))

(For all situations, God wills to oppose a state of affairs iff He is opposed to
such a state of affairs.)

12Nieznański called the axiom associated with this theorem “Axiom of justice” [11, p.
208]. The original version was quite different of that in this paper, for it quantifies over
modal operators and we have avoided to do this throughout N1. Written in our notation, it
would be ∀p(∃xCθCxα(p) → ∀x(DθDθα(p))).
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Proof.
1. CθCθ¬α(p)↔ Cθ¬α(p) [T13, α(p)/¬α(p), Spec]
2. Sθα(p)↔ Cθ¬α(p) [A8, Spec]
3. CθSθα(p)↔ Sθα(p) [Eq, 2 in 1]
4. ∀p(CθSθα(p)↔ Sθα(p)) [Gen, 3]

T19. ∀p(DθSθα(p)↔ Sθα(p))

(For all situations, God permits to oppose a state of affairs iff He opposes such
a state of affairs.)

Proof.
1. DθCθ¬α(p)↔ Cθ¬α(p) [T17, α(p)/¬α(p), Spec]
2. Sθα(p)↔ ¬Cθα(p) [A8, Spec]
3. DθSθα(p)↔ Sθα(p) [Eq, 2 in 1]
4. ∀p(DθSθα(p)↔ Sθα(p)) [Gen, 3]

T20. ∀p(SθDθα(p)↔ Sθα(p))

(For all situations, God opposes to permit a state of affairs iff He opposes such
a state of affairs.)

Proof.
1. DθDθα(p)↔ Dθα(p)) [T15, Spec]
2. ¬DθDθα(p)↔ ¬Dθα(p) [PC, 1]
3. Sθα(p)↔ ¬Dθα(p) [T8, Spec]
4. SθDθα(p)↔ Sθα(p) [Eq, 3 in 2]
5. ∀p(SθDθα(p)↔ Sθα(p)) [Gen, 4]

T21. ∀p(SθCθα(p)↔ Dθ¬α(p))

(For all situations, God opposes to will a state of affairs iff He permits the
state of affairs not to be the case.)

Proof.
1. CθDθ¬α(p)↔ Dθ¬α(p) [T14, α(p)/¬α(p), Spec]
2. Dθ¬α(p)↔ ¬Cθα(p) [T9.2, Spec.]
3. Cθ¬Cθα(p)↔ Dθ¬α(p) [Eq, 2 in 1]
4. SθCθα(p)↔ Cθ¬Cθα(p) [A8, α(p)/Cθα(p), Spec]
5. SθCθα(p)↔ Dθ¬α(p) [Eq, 4 in 3]
6. ∀p(SθCθα(p)↔ Dθ¬α(p)) [Gen, 5]
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T22. ∀p(SθSθα(p)↔ Dθα(p))

(For all situations, God opposes to oppose a state of affairs iff He permits such
a state of affairs.)

Proof.
1. SθSθα(p)↔ Cθ¬Sθα(p) [A8, α(p)/Sθα(p), Spec]
2. Sθα(p)↔ ¬Dθα(p) [T8, Spec]
3. SθSθα(p)↔ Cθ¬¬Dθα(p) [Eq, 2 in 1]
4. SθSθα(p)↔ CθDθα(p) [PC, 3]
5. CθDθα(p)↔ Dθα(p) [T14, Spec]
6. SθSθα(p)↔ Dθα(p) [Eq, 5 in 4]
7. ∀p(SθSθα(p)↔ Dθα(p)) [Gen, 6]

T23. ∀p(Cθα(p)→ ¬CθCθ¬α(p))

(For all situations, if God wills a state of affairs, then He does not will to will
the opposite.)

Proof.
1. Cθα(p)→ α(p) [T4, Spec]
2. α(p)→ Dθα(p) [T10, Spec]
3. Cθα(p)→ Dθα(p) [PC, 1, 2]
4. DθDθα(p)↔ Dθα(p) [T15, Spec]
5. ¬Cθ¬Dθα(p)↔ DθDθα(p) [T9, α(p)/Dθα(p), Spec]
6. ¬Cθ¬Dθα(p)↔ Dθα(p) [Eq, 5 in 4]
7. ¬Dθα(p)↔ Cθ¬α(p) [T9.1, Spec]
8. ¬CθCθ¬α(p)↔ Dθα(p) [Eq, 7 in 6]
9. Cθα(p)→ ¬CθCθ¬α(p) [Eq, 8 in 3]
10. ∀p(Cθα(p)→ ¬CθCθ¬α(p)) [Gen, 9]

3 God and values: a theistic axiology

In this section, we deal with a formal axiology, i. e., a formal treatment of our
ordinary notions of “good”, “evil”, and “neutral” situations. Good, evil, and
neutral situations are established in the axioms A5, A6, A10, and A11.

Theorems from T24 to T31 are consequences of such axioms. They show
some of the relations between good, evil, and neutral situations and their op-
posites.

T24. ∀p(¬n(p)↔ (d(p) ∨ z(p)))
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(A situation is not neutral iff either it is good or evil.)

Proof.
1. n(p)↔ (¬d(p) ∧ ¬z(p)) [A11, Spec]
2. ¬n(p)↔ ¬(¬d(p) ∧ ¬z(p)) [PC, 1]
3. ¬n(p)↔ (¬¬d(p) ∨ ¬¬z(p)) [PC, 2]
4. ¬n(p)↔ (d(p) ∨ z(p)) [PC, 3]
5. ∀p(¬n(p)↔ (d(p) ∨ z(p))) [Gen, 4]

T25. ∀p(n(p) ∨ d(p) ∨ z(p))

(Every situation is neutral, good, or evil.)

Proof.
1. ¬n(p)↔ (d(p) ∨ z(p)) [T24, Spec]
2. ¬n(p)→ (d(p) ∨ z(p)) [PC, 1]
3. n(p) ∨ (d(p) ∨ z(p)) [Def. 3, 2]
4. n(p) ∨ d(p) ∨ z(p) [PC, 3]
5. ∀p(n(p) ∨ d(p) ∨ z(p)) [Gen, 4]

T26. ∀p∀q(Op(p, q)→ (d(p)→ ¬d(q)))

(For all situations, if two situations are opposite, then if one is good, the other
is not good.)

Proof.
1. Op(p, q) [Hip.]
2. Op(p, q)→ (d(p)↔ z(q)) [A7, Spec]
3. d(p)↔ z(q) [MP, 1, 2]
4. z(q)→ ¬d(q) [A6, Spec]
5. d(p)→ ¬d(q) [Eq, 3 in 4]
6. Op(p, q)→ (d(p)→ ¬d(q)) [DT, 1−5]
7. ∀p∀q(Op(p, q)→ (d(p)→ ¬d(q))) [Gen, 7]

T27. ∀p(d(p)→ ¬z(p))

(For all situations, if a situation is good, then it is not evil.)
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Proof.
1. z(p)→ ¬d(p) [A6, Spec]
2. d(p)→ ¬z(p) [PC, 1]
3. ∀p(d(p)→ ¬z(p)) [Gen, 2]

T28. ∀p(¬d(p)→ (n(p) ∨ z(p)))

(For all situations, if a situation is not good, then it is neutral or evil.)

Proof.
1. n(p) ∨ d(p) ∨ z(p) [T25, Spec]
2. d(p) ∨ (n(p) ∨ z(p)) [PC, 1]
3. ¬d(p)→ (n(p) ∨ z(p)) [PC, 2]
4. ∀p(¬d(p)→ (n(p) ∨ z(p))) [Gen, 4]

T29. ∀p(((n(p) ∨ z(p))→ ¬d(p)))

(For all situations, if a situation is neutral or evil, then it is not good.)

Proof.
1. ¬((n(p) ∨ z(p))→ ¬d(p)) [Hip.]
2. (n(p) ∨ z(p)) ∧ ¬¬d(p) [PC, 1]
3. n(p) ∨ z(p) [PC, 2]
4. d(p) [PC, 2]
5. z(p) [Hip., 3]
6. z(p)→ ¬d(p) [A6, Spec]
7. ¬d(p) [MP, 5, 6]
8. n(p) [Hip., 3]
9. n(p)↔ (¬d(p) ∧ ¬z(p)) [A11, Spec]
10. (¬d(p) ∧ ¬z(p)) [MP, 8, 9]
11. ¬d(p) [PC, 10]
12. ¬d(p) [5-11]
13. ¬¬((n(p) ∨ z(p))→ ¬d(p)) [¬ Hip, 1, 4, 12]
14. ((n(p) ∨ z(p))→ ¬d(p)) [PC, 13]
15. ∀p((n(p) ∨ z(p))→ ¬d(p)) [Gen, 14]

T30. ∀p(¬d(p)↔ (n(p) ∨ z(p)))

(A situation is not good iff either it is neutral or evil.)
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Proof.
1. ¬d(p)→ (n(p) ∨ z(p)) [T28]
2. ((n(p) ∨ z(p))→ ¬d(p)) [T29]
3. ¬d(p)↔ (n(p) ∨ z(p)) [PC, 1, 2]
4. ∀p(¬d(p)↔ (n(p) ∨ z(p))) [Gen, 3]

T31. ∀p∀q(Op(p, q)→ (n(p)↔ n(q)))

(If two situations are opposite, then one of them is neutral iff the other is also
neutral.)

Proof.
1. Op(p, q) [Hip]
2. Op(p, q)→ (d(p)↔ z(q)) [A7, Spec]
3. d(p)↔ z(q) [MP, 1, 2]
4. n(p)↔ (¬d(p) ∧ ¬z(p)) [A11, Spec]
5. n(q)↔ (¬d(q) ∧ ¬z(q)) [A11, p/q, Spec]
6. d(q)↔ z(p) [US, 3]
7. n(p)↔ (¬z(q) ∧ ¬d(q)) [Eq, 3 & 6 in 4]
8. n(p)↔ (¬d(q) ∧ ¬z(q)) [PC, 7]
9. n(p)↔ n(q) [PC, 5, 8]
10. Op(p, q)→ (n(p)↔ n(q)) [DT, 1−9]
11. ∀p∀q(Op(p, q)→ (n(p)↔ n(q))) [Gen, 10]

T32. ∀p(CθP (p)→ d(p))

(For all situations, if God wills a situation to be the case, then such a situation
is good.)

Proof.
1. d(p)↔ CθP (p) [A5, Spec]
2. CθP (p)→ d(p) [PC, 1]
3. ∀p(CθP (p)→ d(p)) [Gen, 2]

T33. ∀p(SθP (p)→ ¬d(p))

(For all situations, if God opposes to a situation that is the case, then such a
situation is not good.)
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Proof.
1. d(p)↔ CθP (p) [A5]
2. ¬d(p)↔ ¬CθP (p) [PC, 1]
3. CθP (p)→ ¬Cθ¬P (p) [T6, α(p)/P (p)), Spec]
4. Cθ¬P (p)→ ¬CθP (p) [PC, 3]
5. Cθ¬P (p)→ ¬d(p) [Eq, 2 in 4]
6. SθP (p)↔ Cθ¬P (p) [A8, α(p)/P (p), Spec]
7. SθP (p)→ ¬d(p) [Eq, 6 in 5]
8. ∀p(SθP (p)→ ¬d(p)) [Gen, 7]

It is easy to prove the following theorem from A10, A11, and T33:

T34. ∀p(SθP (p)→ z(p))

(For all situations, if God opposes to a situation to be the case, then the situ-
ation is evil.)

The following theorems T35, T36, and T37 establish the relation between
the axiological values of situations and the permission of God.

T35. ∀p(d(p)→ DθP (p))

(For all situations, if a situation is good, then God permits it to be the case.)

Proof.
1. SθP (p)→ ¬d(p) [T33, Spec.]
2. d(p)→ ¬SθP (p) [PC, 1]
3. DθP (p)↔ ¬SθP (p) [A9, α(p)/α(p), Spec]
4. d(p)→ DθP (p) [Eq, 3 in 2]
5. ∀p(→ DθP (p)) [Gen, 4]

T36. ∀p(¬d(p)→ Dθ¬P (p))

(For all situations, if a situation is not good, then God permits it not to be the
case.)

Proof.
1. Cθα(p)→ d(p)) [T32, Spec]
2. ¬d(p)→ ¬CθP (p) [PC, 1]
4. ¬CθP (p)↔ Dθ¬P (p) [T9.2, α(p)/P (p), Spec]
5. ¬d(p)→ Dθ¬P (p) [Eq, 4 in 3]
6. ∀p(¬d(p)→ Dθ¬P ) [Gen, 5]
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T37. ∀p(n(p)→ (DθP (p) ∧ Dθ¬P (p)))

(For all situations, if a situation is neutral, then God permits it to be or not
to be the case.)

Proof.
1. n(p)↔ (¬d(p) ∧ ¬z(p)) [A11, Spec]
2. ¬z(p)→ ¬SθP (p) [T35, Spec, PC]
3. SθP (p)↔ ¬DθP (p) [A9, α(p)/P (p), Spec]
4. ¬z(p)→ DθP (p) [Eq, 2 in 3, PC]
5. ¬d(p)→ Dθ¬P (p) [T36, Spec]
6. n(p)→ (DθP (p) ∧ Dθ¬P (p)) [PC, 1, 4, 5]
7. ∀p(n(p)→ (DθP (p) ∧ Dθ¬P (p))) [Gen, 4]

The latter theorem states that some situations, namely neutral situations,
are such that both their occurrence and non-occurrence are permitted by God.

The results established so far allow us to address the problem of determin-
ism.

4 Refutation of determinism

As stated earlier, our main concern is to give an answer to the following deter-
minist claim:

(DET1) ∀p(P (p)→ CθP (p))

We are now in position to answer this claim through formal means. The ax-
iom A4 can be informally interpreted as saying that “not everything is flowers”
in the world, or, as stated by Nieznański, “not all events are good” [11, p. 211.]:

A4. ¬∀p(P (p)→ d(p))

In N1, however, we derive T38, a very important theorem, since that it is
the negation of DET1:

T38 (¬DET1). ¬∀p(P (p)→ CθP (p))

(Not all situations is such that, if a situation is the case, then God wills such
a situation to be the case.)

Proof.
1. ¬¬∀p(P (p)→ CθP (p)) [Hip]
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2. ∀p(P (p)→ CθP (p)) [PC, 1]
3. P (p)→ CθP (p) [2, Spec]
4. ∀p(CθP (p)→ d(p)) [T32]
5. CθP (p)→ d(p) [Spec, 4]
6. P (p)→ d(p) [PC, 3, 5]
7. ∀p(P (p)→ d(p)) [Gen, 6]
8. ¬∀p(P (p)→ d(p) [A4]
9. ¬¬¬∀p(P (p)→ CθP (p)) [¬ Hip, 7, 8]
10. ¬∀p(P (p)→ CθP (p)) [PC, 9]

In what follows, it is defined what it means for God to be a ‘want-it-all’,
the kind of person that always wills some state of affairs.

Def. 10 (Want-it-all). OW :↔ ∀p(Cθα(p) ∨ Cθ¬α(p))

(God is a ‘want-it-all’ regarding situations iff for all situations God wills a
state of affairs or its opposite.)

The following theorem shows that, in N1, God is not a ‘want-it-all’.

T39. ¬OW

(God is not a ‘want-it-all’)

Proof.
1. ∀p(Cθα(p) ∨ Cθ¬α(p)) [Hip]
2. ∀p(¬Cθα(p)→ Cθ¬α(p)) [PC, 1]
3. ¬Cθα(p)→ Cθ¬α(p) [Spec, 2]
4. Cθ¬α(p)→ ¬α(p) [T4, α(p)/¬α(p)]
5. ¬Cθα(p)→ ¬α(p) [PC, 3, 4]
6. ∀p(¬Cθα(p)→ ¬α(p)) [Gen, 5]
7. ∀p(α(p)→ Cθα(p)) [PC, 6]
8. ¬∀p(α(p)→ Cθα(p)) [T38]
9. ¬∀p(Cθα(p) ∨ Cθ¬α(p)) [¬ Hip, 1]
10. ¬OW [Def. 10, 9]

Another statement of interest here is the following:

(DET2) ∀p(Wθα(p)→ Cθα(p))

It is a remarkable fact that, in N1, DET1 and DET2 are equivalent, as
T40 shows:
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T40 (DET2 ↔ DET1). ∀p(WθP (p)→ CθP (p))↔ ∀p(P (p)→ CθP (p))

(For all situations, to affirm that if God knows a situation to be the case,
then God wills such a situation to be the case, is equivalent to affirm that if a
situation is the case, then God wills it to be the case.)

Proof.
1. P (p)→WθP (p) [T2, α(p)/P (p), Spec]
2. WθP (p)→ P (p)) [T3, α(p)/P (p), Spec]
3. WθP (p)↔ P (p) [PC, 1, 2]
4. (P (p)→ CθP (p))↔ (P (p)→ CθP (p)) [PC-Theorem]
5. (WθP (p)→ CθP (p))↔ (P (p)→ CθP (p)) [Eq, 3 in 4]
6. ∀p(WθP (p)→ CθP (p))↔ ∀p(P (p)→ CθP (p)) [Gen, 5]

But DET1 is false, thus, from T40, DET2 is also false:

T41 (¬ DET2). ¬∀p(WθP (p)→ CθP (p))

(Not all situations are such that if God knows a situation to be the case, then
God wills such a situation to be the case.)

The definition that follows sets up a new operator, and the theorems that
follow extend the meaning of some results just stated above. We interpret it
as ‘God is the cause of’:13

Def. 11 (God is the direct cause of). (Aθα(p) :↔ Cθα(p))

(God is the direct cause of a state of affairs iff He wills such a state of affairs.)

The following two theorems establish the relation between God as direct
cause of situations and situations that are the case.

T42. ∀p(Aθα(p)→ α(p))

(For all situations, if God is the direct cause of a state of affairs, then such a
state of affairs is the case.)

13Although recognizing Nieznański’s merit on defining this operator and its meaning in the
context of a formal theodicy (as an attempt to deal with the will of God, His responsibility
and the fact that He is the cause of everything in some sense), we interpret it in a different
way: instead of interpreting the operator defined in what follows as ‘God is the cause of’,
‘God is the direct cause of’, for God’s will is effective. Another relevant difference is that, in
N1, the only person involved is God, and by doing this we avoid problems with quantifiers
and multi-modalities – for instance, the definition above in his system would be stated as
Axα(p) :↔ Cxα(p), where x can be quantified.
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Proof.
1. Aθα(p)↔ Cθα(p) [Def. 11]
2. Cθα(p)→ α(p) [T4, Spec]
3. Aθα(p)→ α(p) [Eq, 1 in 2]
4. ∀p(Aθα(p)→ α(p)) [Gen, 3]

T43. ¬∀p(P (p)→ AθP (p))

(God is not the direct cause of every situation that is the case.)

Proof.
1. ∀p(P (p)→ AθP (p)) [Hip]
2. P (p)→ AθP (p) [Spec, 1]
3. AθP (p)↔ CθP (p) [Def. 11, α(p)/P (p)]
4. P (p)→ CθP (p) [Eq, 3 in 2]
5. ∀p(P (p)→ CθP (p)) [Gen, 4]
6. ¬∀p(P (p)→ CθP (p)) [T38]
7. ¬∀p(P (p)→ AθP (p)) [¬ Hip, 5, 6]

Next, we introduce the definition of contingent situation, that is a situation
such that God permits it to be the case or not to be the case. Theorems from
T44 to T49 show the relation between the will of God and contingent situations,
and as a result, they show that there are contingent situations:

Def. 12 (Contingency). K(p) :↔ (DθP (p) ∧ Dθ¬P (p))

(A situation is contingent iff God permits it to be or not to be the case.)

T44. ∀p(K(p)↔ (¬CθP (p) ∧ ¬Cθ¬P (p)))

(For all situations, a situation is contingent iff neither God wills that situation
to be the case, nor wills its opposite to be the case.)

Proof.
1. K(p)↔ (DθP (p) ∧ Dθ¬P (p)) [Def. 12]
2. DθP (p)↔ ¬Cθ¬P (p) [T9, Spec]
3. Dθ¬P (p)↔ ¬CθP (p) [T9.2, Spec]
4. K(p)↔ (¬Cθ¬P (p) ∧ ¬CθP (p)) [Eq, 2 & 3 in 1]
5. K(p)↔ (¬CθP (p) ∧ ¬Cθ¬P (p)) [PC, 4]
6. ∀p(K(p)↔ (¬CθP (p) ∧ ¬Cθ¬P (p))) [Gen, 5]
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T45. ∀p(K(p)↔ (¬CθP (p) ∧ ¬SθP (p)))

(For all situations, a situation is contingent iff neither God wills that situation
to be the case, nor is opposed to that.)

Proof.
1. K(p)↔ (¬CθP (p) ∧ ¬Cθ¬P (p)) [T44, Spec]
2. SθP (p)↔ Cθ¬P (p) [A8, Spec]
3. ¬Cθ¬P (p)↔ ¬SθP (p) [PC, 2]
4. K(p)↔ (¬CθP (p) ∧ ¬SθP (p)) [Eq, 3 in 1]
5. ∀p(K(p)↔ (¬CθP (p) ∧ ¬SθP (p))) [Gen, 4]

T46. ∀p(K(p)↔ ¬(CθP (p) ∨ SθP (p)))

(For all situations, a situation is contingent iff it is not the case that God wills
that situation to be the case or He is opposed to that.)

Proof.
1. K(p)↔ (¬CθP (p) ∧ ¬SθP (p)) [T45, Spec]
2. K(p)↔ ¬(CθP (p) ∨ SθP (p)) [PC, 1]
3. ∀p(K(p)↔ ¬(CθP (p) ∨ SθP (p))) [Gen, 2]

T47. ∃pK(p)↔ ¬∀p(CθP (p) ∨ SθP (p))

(There is a contingent situation iff it is not the case that, for all situations,
God wills that situation to be the case or He is opposed to that.)

Proof.
1. K(p)↔ ¬(CθP (p) ∨ SθP (p)) [T46, Spec]
2. ∃pK(p)↔ ∃p¬(CθP (p) ∨ SθP (p)) [∃, 2]
3. ∃pK(p)↔ ¬∀p¬¬(CθP (p) ∨ SθP (p)) [Def. 1]
4. ∃pK(p)↔ ¬∀p(CθP (p) ∨ SθP (p)) [PC, 3]

T48. ∃pK(p)↔ ¬OW

(There is a contingent situation iff God is not a ‘want-it-all’.)

Proof.
1. ∃pK(p)↔ ¬∀p(CθP (p) ∨ SθP (p)) [T47]
2. SθP (p)↔ Cθ¬P (p) [A8, α(p)/P (p)]
3. ∃pK(p)↔ ¬∀p(CθP (p) ∨ Cθ¬P (p)) [Eq, 2 in 1]
4. OW ↔ ∀p(CθP (p) ∨ Cθ¬P (p)) [Def. 10]
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5. ∃pK(p)↔ ¬OW [Eq, 4 in 3]

T49. ∃pK(p)

(There is at least one situation that is contingent.)

Proof.
1. ∃pK(p)↔ ¬OW [T48]
2. ¬OW [T39]
3. ∃pK(p) [MP, 1, 2]

An attempt to formalize the intuitive notion of responsibility is made below,
where ‘to be responsible for’ is defined as an operator, Oθ. 14

Def. 13 (Responsibility). Oθα(p) :↔ Aθα(p)

(God is responsible for a state of affairs iff He is the direct cause of that.)

Theorem T50 is simply the generalization of definition above:

T50. ∀p(Oθα(p)↔ Aθα(p))

(For all situations, God is responsible for a state of affairs iff He is the direct
cause of such a state of affairs.)

In the following last three theorems of N1, it is shown that if God is
responsible for some situation, then it is good. But if some situation is evil,
God is not responsible for. And, finally, if some evil happens, but God does
not oppose to it (what would imply that it would not be the case), then the
situation is contingent.

T51. ∀p(OθP (p)→ d(p))

(For all situations, if God is responsible for a situation that is the case, then
the situation is good.)

14Originally, definition 13 was stated by Nieznański as Oxα(p) :↔ (Axα(p) ∨ (¬Sxα(p) ∧
WxCθSxα(p))), in the notation of this work. We recognize the merits of Nieznański’s intuition:
according to his thought, some person can be said “responsible” for a state of affairs whenever
this person is the cause of that, or the person is not opposed to it, although knowing that
God wills that person to be opposed to this state of affairs [11, p. 213]. But here, changing
to θ all occurrences of x avoided problems with multi-modalities. This led as consequence to
a simplification of the definition of responsibility, for God is the only person “formalized” in
the system.
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Proof.
1. CθP (p)→ d(p)) [T32, Spec]
2. AθP (p)↔ CθP [Def. 11, α(p)/P (p)]
3. OθP (p)↔ AθP (p) [T51, Spec]
4. OθP (p)↔ CθP (p) [Eq, 3 in 2]
5. OθP (p)→ d(p) [Eq, 4 in 1]
6. ∀p(OθP (p)→ d(p)) [Gen, 5]

T52. ∀p(z(p)→ ¬OθP (p))

(For all situations, if a situation is evil, then God is not responsible for such a
situation.)

Proof.
1. z(p) [Hip]
2. OθP (p)→ d(p) [T50, Spec]
3. ¬d(p)→ ¬OθP (p) [PC, 2]
4. z(p)→ ¬d(p) [A6, Spec]
5. ¬d(p) [MP, 1, 4]
6. ¬OθP (p) [MP, 5, 3]
7. z(p)→ ¬OθP (p) [DT, 1-6]
8. ∀p(z(p)→ ¬OθP (p)) [Gen, 7]

T53. ∀p((z(p) ∧ ¬SθP (p))→ K(p))

(For all situations, if a situation is evil, and God is not opposed to it, then the
situation is contingent.)

Proof.
1. z(p) ∧ ¬SθP (p) [Hip.]
2. z(p) [PC, 1]
3. ¬SθP (p) [PC, 1]
4. z(p)→ ¬OθP (p) [T52, Spec]
5. ¬OθP (p) [MP, 2, 4]
6. OθP (p)↔ AθP (p) [T50, Spec.]
7. ¬OθP (p)↔ ¬AθP (p) [PC, 6]
8. ¬AθP (p) [MP, 5, 7]
9. AθP (p)↔ CθP (p) [Def 11, α(p)/P (p)]
10. ¬AθP (p)↔ ¬CθP (p) [PC, 9]
11. ¬CθP (p) [PC, 8, 10]
12. ¬CθP (p) ∧ ¬SθP (p) [PC, 11, 3]
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13. K(p)↔ ¬CθP (p) ∧ ¬SθP (p) [T45, Spec]
14. K(p) [Eq, 13 in 12]
15. (z(p) ∧ ¬SθP (p))→ K(p) [DT, 1–14]
16. ∀p((z(p) ∧ ¬SθP (p))→ K(p)) [Gen, 15]

5 Semantics for N1

A modelM for N1 consists of a quadruple 〈W,R,D, V 〉, in which W is a set of
‘worlds’, R is a relation on W , D is a domain of ‘objects’, and V is a function
such that, if P is an n-ary predicate in LN1, then V (P) is a set of n+1-tuples
in the form (u1, u2, ..., un, w), in which u1, ..., un ∈ D, and w ∈W .

In such model every assignment µ is such that, for each variable p of LN1,
µ(p) ∈ D. Since N1 has only one constant (‘θ’), we fix an element t ∈ D to be
its interpretation, i. e., for every µ, µ(θ) = t, where t is a fixed element in D.

Every wff φ has a truth-value (1 or 0) at a world with respect to an assign-
ment µ according to the following conditions:

(a) Vµ(φ(x), w) = 1 iff (µ(x), w) ∈ V (φ), and 0 otherwise;
(b) Vµ(¬φ,w) = 1 iff Vµ(φ,w) = 0, and 0 otherwise;
(c) Vµ(φ→ ψ,w) iff Vµ(φ,w) = 0 or Vµ(ψ,w) = 1, and 0 otherwise;
(d) Vµ(φ ∨ ψ,w) = 1 iff Vµ(φ,w) = 1 or Vµ(ψ,w) = 1, and 0 otherwise;
(e) Vµ(φ ∧ ψ,w) = 1 iff Vµ(φ,w) = 1 and Vµ(ψ,w) = 1, and 0 otherwise;
(f) Vµ(Cθφ,w) = 1 iff Vµ(φ,w′) = 1 for every w′ ∈ W such that wRw′, and 0
otherwise;
(g) Vµ(Wθφ,w) = 1 iff Vµ(φ,w) = 1, and 0 otherwise;
(h) Vµ(∀xφ(x), w) = 1 iff Vµ(φ(x), w) = 1 for every x ∈ D− {t}, and 0 other-
wise.

A wff φ is valid in M iff Vµ(φ,w) = 1, for every w ∈ W and every
assignment µ.

In the following, we introduce a particular model for N1.

LetM = 〈W,R,D, V 〉 be an interpretation for N1, such that W = {w0, w1,
..., wn, ...}, where n ∈ N, R = W ×W , D = Z, and V is the union of the fol-
lowing sets:

V (B) = {(0, wn) : n ∈ N};
V (z) = {(−1, wn) : n ∈ N};
V (P ) = V (B) ∪ V (z) ∪ {(2n,wn) : n ∈ N};
V (d) = V (P )− V (z);
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V (n) = {(3n,wn) : n ∈ N∗};
V (Op) = {(i,−i, wn) : i ∈ Z∗ and n ∈ N}.

We fix 0 as the interpretation of θ, then for every assignment µ:

µ(θ) = 0;
µ(p) = k, where k ∈ Z∗.

It is possible to show that M is a model for N1, and consequently, the
axioms of N1 are valid in M.

6 Final remarks

We presented here our system N1, which deals with the Logical Problem of
Evil, based essentially on the system introduced by Edward Nieznański in
[11]. We believe that N1 has a more adequate modal characterization. Our
philosophical concern was to investigate the allegation that God’s omnipotence
implies that every situation which is the case, including evil ones, is willed
by God. We showed that actually, given a formalization that could be easily
accepted by many theists, it is possible to deduce that the attributes of God are
not inconsistent with the existence of evil, and more, that religious determinism
(as formalized in the system) is false. We showed also that, assuming the
formalization given in N1, God is neither the direct cause of, nor responsible
for every situation; that there are contingent situations; that evil situations
that God does not oppose are contingent; among other results.

As a secondary result, we think that N1 establishes also a very promising
approach in applications of formal systems. That contemporary logic has pow-
erful tools to solve relevant problems is beyond any doubt, but we think that
our system is an example of how formal logic can be applied to deal with philo-
sophical problems in the fields of Philosophy of Religion and Analytic Theology.
Finally, to elaborate a formal theodicy is just one more way to contribute for
the establishment of bridges between the fields of Logic and Religion, and we
aim at colaborating even more to that.
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Probability, Intuitionistic Logic and Strong Negation

François Lepage

Abstract

In this paper I present a sequent calculus for intuitionistic first-order logic
with strong negation. The semantic is probabilistic, more precisely, it is
based on partial conditional probability functions. Soundness and com-
pleteness are proved.

Keywords: Probabilistic interpretation, Intuitionistic logic, Strong negation,
Conditional probability

Introduction

The notation Pr(A,Γ) will be used for the probability of A conditional on
the set of sentences Γ. The main feature of this semantics is that,
Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A}) i.e. the conditional probability of the intu-
itionistic conditional is the probability of the consequent conditionalized on
the antecedent, when Pr(B,Γ ∪ {A}) is defined.

It is a well-known fact that intuitionistic logic is closed to 3-value logic even
if it is not a n-value logic. In fact, intuitionistic logic is not verifunctional. For
example, A ⊃ B is true iff, when we find a proof of A, we find a proof of B,
i.e., if we discover that A is true, then we discover that B is true.

In the probabilistic context, the situation is slightly more complex. This
is so, because intuitionistic negation is not the adequate negation for proba-
bilistic interpretation. For example, Pr(¬(A ⊃ B),Γ) cannot be, in general, be
(1− Pr((A ⊃ B),Γ)).
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1 A Sequent Calculus for Intuitionistic Predicate
Logic with Strong Negation (SCIPLSN)

In what follows, ∼ is the strong negation, F is falsity and ¬ is the intuitionistic
negation and is not a primitive: ¬A=defA ⊃ F .

Definition 1.1. Let Con = {c1, . . . , cn, . . .} be the set of constants, V ar =
{x1, . . . , xn, . . .} the set of variables, Fon = {f0

0 , . . . , f
m
n , . . .} the set of func-

tion letters and Pre = {A0
0, . . . , A

m
n , . . .} the set of predicate letters (the super-

script indicates the number of arguments).

The set Ter of terms is defined as:
(i) Con ∪ V ar ⊆ Ter
(ii) If ti1 , . . . , tim ∈ Ter, then fmn (ti1 , . . . , tim) ∈ Ter
(iii) Nothing else is in Ter.

The set WFFs of well-formed formulas is defined as:
(i) {F,Am

n (ti1 , . . . , tim)} ⊆WFF for any i, n,m ∈ N;
(ii) if A,B ∈WFF , then ∼A,∀xiA,∃xiA, (A∧B), (A∨B), (A ⊃ B) ∈WFF ;
(iii) Nothing else is in WFF .

For a wff ∀xiA (resp. ∃xiA), A is call the scope of ∀xi (resp. ∃xi).

An occurrence of a variable xi in A which is not in the scope of ∀xi (resp.
∃xi) nor immediately preceded by ∀ (resp. ∃) is said to be free.

An occurrence of a variable xi in A which is in the scope of ∀xi (resp.
∃xi) or immediately preceded by ∀ (resp. ∃) is said to be bound.

Definition 1.2. Let A be a wff and t a term. A[t|xi] is the wff obtained by the
substitution of all the free occurrences of xi in A by t.
t is said to be free for xi in A iff no variable occurring in t is bound in A[t|xi].

Axioms

A,Γ⇒ A A1

F,Γ⇒ C A2

Γ⇒ ∼F A3
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Logical Rules

Γ⇒ A

∼A,Γ⇒ C
L∼

A,Γ⇒ C

∼∼A,Γ⇒ C
L∼∼ Γ⇒ A

Γ⇒ ∼∼A R∼∼

A,B,Γ⇒ C

A ∧B,Γ⇒ C
L∧ Γ⇒ A Γ⇒ B

Γ⇒ A ∧B, R∧

A,Γ⇒ C B,Γ⇒ C

A ∨B,Γ⇒ C
L∨ Γ⇒ A

Γ⇒ A ∨B R∨1

Γ⇒ B

Γ⇒ A ∨B R∨2

∼A,Γ⇒ C ∼B,Γ⇒ C

∼(A ∧B),Γ⇒ C
L∼∧ Γ⇒ ∼A

Γ⇒ ∼(A ∧B)
R∼∧1

Γ⇒ ∼B
Γ⇒ ∼(A ∧B)

R∼∧2

∼A,∼B,Γ⇒ C

∼(A ∨B),Γ⇒ C
L∼∨ Γ⇒ ∼A Γ⇒ ∼B

Γ⇒ ∼(A ∨B)
R∼∨

Γ⇒ A B,Γ⇒ C

A ⊃ B,Γ⇒ C
L ⊃ A,Γ⇒ B

Γ⇒ A ⊃ B R ⊃

A,∼B,Γ⇒ C

∼(A ⊃ B),Γ⇒ C
L∼⊃ Γ⇒ A Γ⇒ ∼B

Γ⇒ ∼(A ⊃ B)
R∼⊃

A[t|x],Γ⇒ C

∀xA,Γ⇒ C
L ∀ Γ⇒ A[y|x]

Γ⇒ ∀xA R ∀

A[y|x],Γ⇒ C

∃xA,Γ⇒ C
L ∃ Γ⇒ A[t|x]

Γ⇒ ∃xA R ∃
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Here we suppose that t is free for x in A and A[t|x] is the wff obtained from
A by replacing all the free occurrences of x by t. For R ∀, we also need the
following restriction: y must not be free in Γ, ∀xA. For L ∃, we also need the
following restriction: y must not be free in Γ, ∀xA and C.

∼A[t|x],Γ⇒ C

∼∃xA,Γ⇒ C
L∼∃ Γ⇒ ∼A[y|x]

Γ⇒ ∼∃xA R∼∃

∼A[y|x],Γ⇒ C

∼∀xA,Γ⇒ C
L∼∀ Γ⇒ ∼A[t|x]

Γ⇒ ∼∀xA R∼∀

For R ∼∃, we also need the following restriction: y must not be free in Γ,
∼∃xA. For L ∼∀, we also need the following restriction: y must not be free in
Γ, ∼∀xA and C.

From a proof-theoretic point of view, Γ⇒ ∼A can be interpreted as “from
Γ we have a constructive proof of the falsity of A”. The introduction of strong
negation gives us a conservative extension of intuitionistic logic: every derivable
sequent of intuitionistic logic is a derivable sequent of intuitionistic logic with
strong negation. Moreover, in intuitionistic logic we have Γ ⇒ A or Γ /⇒ A.
In intuitionistic logic with strong negation we have Γ ⇒ A or Γ ⇒ ∼A or
(Γ /⇒ A and Γ /⇒ ∼A.

We will also use the Cut Rule

Γ⇒ A A,∆⇒ C

∆,Γ⇒ C Cut

without proving its admissibility. See Negri and von Plato [19].

2 Partial Conditional Probability Functions

We now characterize the notion of partial conditional probability function.

Definition 2.1. A partial conditional probability function is any partial func-
tion

Pr : WFF × 2WFF → [0, 1]
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which satisfies some postulates that will be specified below.

A background Γ is said to be Pr-abnormal iff, for any A, Pr(A,Γ) = 1.
Otherwise, it is Pr-normal.

Two partial conditional probability functions that give the same value for
the same argument when defined are identical, i.e. they are the same function.
When Pr(A,Γ) is not defined, we will say that the probability of A is unknown
(the interpretation of probability is clearly subjective) giving the background
Γ. A first general constraint on partial conditional probability functions is the
condition:

Probabilistic Equivalence (PE). Let A and B be two wffs. We will say that
A and B are probabilistically equivalent iff, for any Pr and any Γ
(i) Pr(A,Γ) and Pr(B,Γ) are both defined or both undefined;
(ii) Pr(A,Γ) = Pr(B,Γ) when defined.

Probabilistic equivalence is the strongest semantic equivalence relation. See
Theorem 2.5 below.

The following definition will be useful.

Definition 2.2. A n-permutation is a bijection pern : {1, . . . , n} → {1, . . . , n}.

We will write
n∧

i=1
Ai for (A1∧(. . .∧An) . . .) and

n∨
i=1

Ai for (A1∨(. . .∨An) . . .).

We restrict the set of partial probability functions to those which satisfy
the following postulates:

DF. 1. If Pr(Aj ,Γ) = 0 for some 1 ≤ j ≤ n, then Pr(
n∧

i=1
Ai,Γ) = 0;

DF. 2. If Pr(Aj ,Γ) = 1 for some 1 ≤ j ≤ n, then Pr(
n∨

i=1
Ai,Γ) = 1;

Postulates DF.1 and DF.2 are the rules governing “unknown”.

The following postulates are also satisfied. When the probabilities are
known:

POS. 3. 0 ≤ Pr(A,Γ) ≤ 1;

POS. 4. If A ∈ Γ, then Pr(A,Γ) = 1;



86 F. Lepage

POS. 5. Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ)− Pr(A1 ∧ (
n∨

i=2
Ai,Γ));

POS. 6. Pr(
n∧

i=1
Ai,Γ) = Pr(A1,Γ)× Pr(

n∧
i=2

Ai,Γ ∪ {A1});

POS. 7. Pr(
n∧

i=1
Ai,Γ) = Pr(

n∧
i=1

Apern(i),Γ)

POS. 8. Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A});

POS. 9. If Γ is Pr-normal, then Pr(∼A,Γ) =
(1) 1− Pr(A,Γ) if A is an atom or F or (B ∧C) or (B ∨C) or ∀xA or ∃xA;
(2) Pr(B,Γ)× Pr(∼C,Γ ∪ {B}) if A is (B ⊃ C);
(3) Pr(B,Γ) if A is ∼B;

POS. 10. Pr(C,Γ ∪ {
n∧

i=1
Ai}) = Pr(C,Γ ∪ {A1, . . . , An});

POS. 11. If Γ is Pr-normal, then Pr(F,Γ) = 0;

POS. 12. If, for any ∆, Pr(A,Γ ∪∆) = 1,
then for any B and C, Pr(C,Γ ∪∆ ∪ {B}) = Pr(C,Γ ∪∆ ∪ {(A ⊃ B)})

POS. 13. If Pr(C,Γ∪{Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ∪
{

n∨
i=1

Ai}) = 1;

POS. 14. If Pr(C,Γ∪{∼A1, . . . ,∼An}) = 1, then Pr(C,Γ∪{∼(
n∨

i=1
Ai})) = 1;

POS. 15. If Pr(C,Γ ∪ {∼Ai}) = 1 for any i such that 1 ≤ i ≤ n, then

Pr(C,Γ ∪ {∼(
n∧

i=1
Ai})) = 1;

POS. 16. Pr(∀xA,Γ) = lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ)where t1, . . . , tn, . . . is an enu-

meration of all the terms that are free for x in A ;

POS. 17. Pr(∃xA,Γ) = lim
n→∞

Pr(
n∨

i=1
A[yi|x],Γ) where y1, . . . , yn, . . . is an enu-

meration of all the variables which are not free in A and Γ;

POS. 18. If Pr(C,Γ ∪ {A[t|x]}) = 1, then Pr(C,Γ ∪ {∀xA}) = 1 where t is
free for x in A;

POS. 19. If Pr(C,Γ ∪ {A[y|x]}) = 1, then Pr(C,Γ ∪ {∃xA}) = 1 where y is
not free in A, Γ and C;
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POS. 20. If Pr(A[y|x],Γ) = 1 with y not free in Γ nor in A (or y = x), then
Pr(A[t|x],Γ) = 1 where t is free for x in A.

Remarks 2.3.
• DF.1-DF.2 are quite intuitive. For example, if Pr(A,Γ) = 0, then Pr(B ∧
A,Γ) = 0, Pr(B,Γ) being defined or not.
• Unknown is not a value but a lack of value. So, arithmetical operations
cannot be applied to expressions with unknown values, even equality. Even
if both Pr(A,Γ) and Pr(B,∆) are both unknown, this doesn’t mean that they
are equal.The only legitimate uses of expressions that have unknown values are
those explicitly given by DF.1-DF.2. So, if Pr(p,Γ) is unknown, POS.6 does
not hold, i.e. Pr(p ∧ ∼p,Γ) is undefined if Γ is Pr-normal.

One can easily prove that

Theorem 2.4. Pr(
n∨

i=1
Ai,Γ) = Pr(

n∨
i=1

Apern(i),Γ).

Proof. We just give a sketch of the proof. We proceed by induction using
POS.5, POS.6 and POS.7. It is clear and that any permutation of the disjuncts
preserves the value or lack of value.

Furthermore, using POS.10 together with POS.5 and POS.6, we can eas-

ily prove that, when defined, for any n ∈ N, Pr(
n∧

i=1
Ai,Γ) ≤ Pr(

n−1∧
i=1

Ai,Γ) and

Pr(
n∨

i=1
Ai,Γ) ≥ Pr(

n−1∨
i=1

Ai,Γ). So the sequences Pr(A1,Γ),. . . , Pr(
n∧

i=1
Ai,Γ), . . . ,

and Pr(A1,Γ),. . . , Pr(
n∨

i=1
Ai,Γ), . . . , are respectively decreasing and increasing.

As these sequences are bounded (by POS.3), it follows, by an elementary result
of real numbers analysis, that their limits exist and are in [0, 1]. This insures
that POS.16 and POS.17 are not only very intuitive constraints but are ade-
quate.

POS.8, Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A}) calls for some comments. It is
simply the expression of the very intuitive interpretation of the probability of
the conditional as the conditional probability. David Lewis showed that this
cannot apply to material conditional, i.e. to ∼A∨B. But it can be applied to
A ⊃ B when “ ⊃ ” is the probabilistic conditional: The probability of A ⊃ B
given the background Γ is just the probability of B when A is hypothetically
add to Γ. Lewis’ proof does not hold in intuitionistic logic nor in intuitionistic
logic with strong negation. See [9].

The following theorem will be useful.
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Theorem 2.5. (Substituability of Probabilistic Equivalents in Background) Let
A and B be two wffs and Γ a set of wffs. If for any ∆, Pr(A,Γ ∪∆) is known
iff Pr(B,Γ ∪ ∆) is known and Pr(A,Γ ∪ ∆) = Pr(B,Γ ∪ ∆) when both are
known, then, for any C, Pr(C,Γ ∪∆ ∪ {A}) = Pr(C,Γ ∪∆ ∪ {B}) when both
are known.

Proof.
Pr(C ∧A,Γ ∪∆) =

Pr(C,Γ ∪∆)× Pr(A,Γ ∪∆ ∪ {C}) POS.13
Pr(C ∧B,Γ ∪∆) =

Pr(C,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {C}) POS.13
Pr(C ∧A,Γ ∪∆) = Pr(C ∧B,Γ ∪∆) Assumption + algebra
Pr(A ∧ C,Γ ∪∆) = Pr(B ∧ C,Γ ∪∆) POS.15
Pr(A,Γ ∪∆)× Pr(C,Γ ∪∆ ∪ {A}) =
Pr(B,Γ ∪∆)× Pr(C,Γ ∪∆ ∪ {B}) POS.13
Pr(C,Γ ∪∆ ∪ {A}) = Pr(C,Γ ∪∆ ∪ {B}) Assumption + algebra

Theorem 2.6. ∼(A ⊃ B) and (A ∧ ∼B) are substitutable in backgrounds.

Proof. Trivial by POS.9 (2).

The following definition will be useful.

Definition 2.7. Let PB ⊆ WFF be the set of wffs that are not of the form
A ⊃ B (PB for pseudo boolean).

Theorem 2.8. For any wff A ∈ PB, if Γ is Pr-normal, then Pr(∼A,Γ) =
1− Pr(A,Γ) when Pr(A,Γ) is defined.

Proof. This is a trivial consequence of POS.9 (1) and when A is ∼B, the
conclusion follows from induction using POS.9 (3).

This is the “classical” case. Consider the case where A /∈ PB. We have
Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)× Pr(∼C,Γ ∪ {B}), when defined. The easy case
is when C ∈ PB: Pr(∼(B ⊃ C),Γ) = Pr(B,Γ) × (1 − Pr(C,Γ ∪ {B})) =
Pr(B,Γ)× (1− Pr(B ⊃ C),Γ). We have three sub-cases:

(1) If Pr(B ⊃ C,Γ) = 0, then Pr(∼(B ⊃ C),Γ) = Pr(B,Γ).
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(2) If 0 < Pr((B ⊃ C),Γ) < 1, then 0 < Pr(∼(B ⊃ C),Γ) < Pr(B,Γ)

(3) If Pr(B ⊃ C),Γ) = 1, then Pr(∼(B ⊃ C),Γ) = 0.

(1) If Pr((B ⊃ C),Γ) = 0, then Pr(C,Γ ∪ {B}) = 0. By hypothesis, C ∈ PB
and thus Pr(∼C,Γ∪ {B})) = (1−Pr(C,Γ∪ {B})) = 1 As Pr(∼(B ⊃ C),Γ) =
Pr(B,Γ)×Pr(∼C,Γ∪{B})) we have Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)×Pr(∼C,Γ∪
{B}) = Pr(B,Γ)× (1− 0) = Pr(B,Γ).

(2) We have 0 < Pr((B ⊃ C),Γ) < 1 and thus 0 < Pr(C,Γ ∪ {B}) < 1
Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)× Pr(∼C,Γ ∪ {B}).
This implies that 0 < Pr(∼(B ⊃ C),Γ) < Pr(B,Γ) because Pr(∼C,Γ∪{B}) =
1− Pr(C,Γ ∪ {B}) and 0 < 1− Pr(C,Γ ∪ {B}) < 1

(3) We have Pr((B ⊃ C),Γ) = 1 = Pr(C,Γ ∪ {B})
But Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)×Pr(∼C,Γ∪{B}) = Pr(B,Γ)×(1−Pr(C,Γ∪
{B})) = Pr(B,Γ)× (1− 1) = 0.

We now have to take a closer look to the general case. The problem is with
C:
Pr((B ⊃ C),Γ) = Pr(B,Γ) × Pr(∼C,Γ ∪ {B}). If C /∈ PB i.e. C is D ⊃ E,
we are back to square one. We clearly need a proof based on the number of “⊃”.

Theorem 2.9. Let A be (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB (any A has this form, for some n ≥ 0). Then, when Pr(∼A,Γ)
is defined

(1) If Pr(A,Γ) = 0 then Pr(∼A,Γ) = Pr(C0,Γ)×Pr(C1,Γ∪{C0})×Pr(C2,Γ∪
{C0, C1})× . . .× Pr(∼Cn,Γ ∪ {C0, C1, C2 . . . Cn−1});

(2) 0 < Pr(A,Γ) < 1, then
0 < Pr(∼A,Γ) < Pr(C0,Γ) × Pr(C1,Γ ∪ {C0}) × Pr(C2,Γ ∪ {C0, C1}) × . . . ×
Pr(∼Cn,Γ ∪ {C0, C1, C2 . . . Cn−1});

(3) If Pr(A,Γ) = 1 then Pr(∼A,Γ) = 0

Proof. First of all, by applying POS.8 n times, we have Pr(C0 ⊃ (C1 ⊃ (C2 ⊃



90 F. Lepage

(. . . ⊃ (Cn−1 ⊃ Cn) . . .))),Γ) = Pr(Cn,Γ ∪ {C0, C1, C2 . . . Cn−1})

By applying POS.9 (2) n times, we have
Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) = Pr(C0,Γ) ×
Pr(C1,Γ∪{C0})×Pr(C2,Γ∪{C0, C1})×. . .×Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1})

(1) We need to make sure that: If Pr(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃
Cn) . . .))))),Γ) = 0, then Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))),Γ) =
Pr(C0,Γ)×Pr(C1,Γ∪{C0})×Pr(C2,Γ∪{C0, C1})×. . .×Pr(Cn,Γ∪{C0, C1, C2 . . . Cn−1})
i.e. if Pr(Cn,Γ∪{C0, C1, C2 . . . Cn−1}) = 0, then Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1})) =
1.
This is trivial because Cn /∈ PB and thus, Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1}) =
(1− Pr(Cn,Γ ∪ {C0, C1, C2 . . . Cn−1})) = (1− 0) = 1.

(2) and (3) are also quite trivial along the same lines.

Corollary 2.10. Let A be (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB. Then, when defined, Pr(∼A,Γ) ≤ 1− Pr(A,Γ).

Proof. Trivial.

The following theorems will be useful.

Theorem 2.11. If Pr(A,Γ) = 1 and Pr(B,Γ) is defined, then Pr(B,Γ) =
Pr(B,Γ ∪ {A}).

Proof.
Pr(A ∨B),Γ) = 1 DF.2
= Pr(A,Γ) + Pr(B,Γ)− Pr(A ∧B),Γ) POS.5
= 1 + Pr(B,Γ)− Pr(A ∧B),Γ) Pr(A,Γ) = 1
Pr(B,Γ) = Pr(A ∧B,Γ) Algebra
Pr(B,Γ) = Pr(A,Γ)× Pr(B,Γ ∪ {A}) POS.6
Pr(B,Γ) = Pr(B,Γ ∪ {A}) Pr(A,Γ) = 1

Theorem 2.12. If Pr(∼A,Γ) = 1, then Pr(A,Γ) = 0

Proof. If A ∈ PB, it is a trivial consequence of POS.9 (1)-(3).
If not, A is (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB.
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Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . .
⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) = 1 Hypothesis

= Pr(C0,Γ)× Pr(C1,Γ ∪ { C0})× . . .×
Pr(∼(Cn,Γ ∪ {C0, . . . , Cn−1}) POS.9 (2) n times

Pr(C0,Γ) = Pr(C1,Γ ∪ {C0}) = . . . =
Pr(Cn−1,Γ ∪ {C0, . . . , Cn−2}) = 1 Algebra

Pr(C0,Γ) = Pr(C1,Γ) = . . . =
Pr(Cn−1,Γ) = 1 Thm 2.11 (n− 1) times

Pr(∼Cn,Γ ∪ {C0, . . . , Cn−1}) = 1 Algebra
Pr(Cn,Γ ∪ {C0, . . . , Cn−1}) = 0 Cn ∈ PB
Pr(Cn,Γ) = 0 Pr(Ci,Γ) = 1

for 0 ≤ i ≤ (n− 1)
and Thm 2.11 (n− 1) times

Pr(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . .
⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) =
Pr(Cn,Γ ∪ {C0, . . . , Cn−1}) =
Pr(Cn,Γ) = 0 Pr(Ci,Γ) = 1

for 0 ≤ i ≤ (n− 1)
and Thm 2.11 (n− 1) times

The above theorems show that the probabilistic semantic value of formulas
containing strong negation of “horseshoe” is far from being trivial.

Theorem 2.13. If A1, A2 ∈ PB, then ∼(A1 ∧ A2) and (∼A1 ∨ ∼A2) are
probabilisticaly equivalent.

Proof. We have to prove that, for any Γ, Pr(∼(A1 ∧ A2),Γ) = Pr((∼A1 ∨
∼A2),Γ) or both are unknown. Let us suppose that Pr(∼(A1 ∧ A2),Γ) is
known. Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) by POS.9 (1).

As the general proof uses Bayes’ theorem, we need to consider a special
case. Let us suppose that Pr(∼A1,Γ) = 0 (a similar proof holds for A2).

(α)

Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) POS.9 (1)
Pr(∼A1,Γ) = 0 Hypothesis
Pr(A1,Γ) = 1 A1 ∈ PB

Pr((A1 ∧A2),Γ) = Pr(A2,Γ) DF.1
1− Pr((A1 ∧A2),Γ) = 1− Pr(A2,Γ) Algebra
Pr(∼(A1 ∧A2),Γ) = Pr((∼A1 ∨ ∼A2),Γ) DF.2
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(β) Let us suppose that Pr(∼A1,Γ) 6= 0 and Pr(∼A2,Γ) 6= 0.

In that case, Pr(∼(A1∧A2),Γ) and Pr((∼A1 ∨∼A2),Γ) are both undefined
if and only if one of them is undefined.

We prove: Pr(∼(A1 ∧A2),Γ) = Pr((∼A1 ∨ ∼A2),Γ).

Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) POS.9 (1)
= 1− Pr(A1,Γ ∪ {A2}))× Pr(A2,Γ) POS.6
= Pr(∼A2,Γ) + Pr(A2,Γ)− Pr(A1,Γ ∪ {A2}))
×Pr(A2,Γ) A2 ∈ PB

= Pr(∼A2,Γ) + Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ)− Pr(∼A1,Γ) + Pr(∼A2,Γ)

+ Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr(∼A1,Γ)

+ Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr(∼A1,Γ)×(

1− Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2}))
Pr(∼A1,Γ)

)
Algebra

= Pr(∼A1,Γ) + Pr(∼A2,Γ)−
Pr(∼A1,Γ)× (1− PrA2,Γ ∪ {∼A1}) Bayes

= Pr(∼A1,Γ) + Pr(∼A2,Γ)−
Pr(∼A1,Γ)× (Pr(∼A2),Γ ∪ {∼A1}) A2 ∈ PB

= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr((∼A1 ∧ ∼A1),Γ) POS.6
= Pr((∼A1 ∨ ∼A2),Γ) POS.5

Similarly, we have:

Pr(∼∃xiA,Γ) = Pr(∀xi∼A,Γ)

Pr(∼∃xiA,Γ) = 1− Pr(∃xiA,Γ) POS.9 (1)

= 1− lim
n→∞

Pr(
n∨

i=1
A[tin |x],Γ) POS.17

= lim
n→∞

(1− Pr(
n∨

i=1
A[tin |x],Γ)) Elementary calculus

= lim
n→∞

Pr(∼
n∨

i=1
A[tin |x],Γ) POS.9 (1)

In what follows, we will use “unknown”, “unknown value” and “undefined”
for the same purpose depending on the context.
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Γ ⇒ A is a valid sequent according to partial probabilistic interpretations
iff, for any Pr satisfying all the DF and all the POS,

Pr(A,Γ ∪∆) = 1

for all ∆. This intuition is very robust. A is a valid consequence of Γ iff, the
probability that A is 1 and remains invariant, regardless of what is added to
the background Γ.

Theorem 2.14. If Γ is Pr-abnormal, then Γ ∪ {A} is Pr-abnormal.

Proof.
Pr(A,Γ) = Pr(B,Γ) = 1 Γ is Pr-abnormal
Pr(B,Γ) = Pr(B,Γ ∪ {A}) = 1 Theorem 2.11

Theorem 2.15. If Pr(A ∧ ∼A,Γ) = 1, then Γ is Pr-abnormal.

Proof. Let us suppose that Γ is Pr-normal.

Pr(A ∧ ∼A,Γ) = 1 Hypothesis
Pr(A,Γ)× Pr(∼A,Γ ∪ {A}) = 1 POS.6
Pr(A,Γ) = Pr(∼A,Γ ∪ {A}) = 1 Algebra
Pr(∼A,Γ) = 1 Theorem 2.11
Pr(∼∼A,Γ) = 0 Theorem 2.12
Pr(A,Γ) = 0 POS. 9 (3)
1 = 0

Thus Γ is Pr-abnormal.

Theorem 2.16. If Γ is Pr-normal but Γ ∪ {A} is Pr-abnormal and Pr(A,Γ)
is defined, then Pr(A,Γ) = 0.

Proof.
Pr(F,Γ ∪ {A}) = 1 Γ ∪ {A} is Pr-abnormal
Pr(A,Γ) 6= 0 Hypothesis
Pr(F ∧A,Γ) = Pr(A ∧ F,Γ) POS.7
Pr(A ∧ F,Γ) = Pr(A,Γ)× Pr(F,Γ ∪ {A} POS.6
Pr(A ∧ F,Γ) = Pr(A,Γ) Γ ∪ {A} is Pr-abnormal

But this is impossible because, by POS.11 and DF.1 Pr(F ∧ A,Γ) = 0.
Thus Pr(A,Γ) = 0.

Theorem 2.17. If Pr(A,Γ) = 1 and Pr(A ⊃ B,Γ) = 0, then Pr(B,Γ) = 0.
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Proof.
0 = Pr(A ⊃ B,Γ) Hypothesis
= Pr(B,Γ ∪ {A}) POS.8
= Pr(B,Γ) Theorem 2.11

Theorem 2.18. If Pr(A,Γ) 6= 0 or (Pr(B,Γ) 6= 0), then Pr(A ∨B,Γ) 6= 0.

Proof. We proceed by contraposition.

0 = Pr(A ∨B,Γ) Hypothesis
= Pr(A,Γ) + Pr(B,Γ)− Pr(A ∧B,Γ) POS.5
= Pr(A,Γ) + Pr(B,Γ)− Pr(A,Γ)× Pr(B,Γ ∪ {A}) POS.6
= Pr(A,Γ)× (1− Pr(B,Γ ∪ {A})) + Pr(B,Γ) Algebra
Pr(A,Γ)× (1− Pr(B,Γ ∪ {A})) = 0 and Pr(B,Γ) = 0 POS.3
Pr(A,Γ) = 0 Algebra

3 Soundness

Let us recall the definition of validity: Γ ⇒ A is a valid sequent according to
partial probabilistic interpretations iff, for any Pr satisfying DF.1-DF.2 and
POS.3-POS.20,

Pr(A,Γ ∪∆) = 1

for all ∆. We write Γ ||− A.

We have two types of rules:

Γ⇒ A

∆⇒ C
and

Γ⇒ A Λ⇒ B

∆⇒ C
.

The former is sound iff Γ ||− A implies ∆ ||− C.

The latter is sound iff Γ ||− A and Λ ||− B implies ∆ ||− C.

Theorem 3.1. The sequent calculus SCILSN is sound according to partial
probabilistic interpretations.

We need to verify the validity of the axioms and the soundness of the rules.

Axioms

A1 A,Γ⇒ A is valid.
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Proof. By POS.4, for any A, Γ and Pr, Pr(A,Γ ∪ {A} ∪∆) = 1

A2 F,Γ⇒ A is valid.

Proof. We show that Γ ∪ {F} ∪∆ is Pr-abnormal for any Γ,Pr and ∆.

Pr(F,Γ ∪ {F} ∪∆) = 1 POS.4
Γ ∪ {F} ∪∆ is Pr-abnormal POS.11
Pr(A,Γ ∪ {F} ∪∆ = 1 Theorem 2.14
F,Γ⇒ A is valid Definition of validity.

A3 Γ⇒ ∼F is valid.

Proof. If Γ is Pr-abnormal, il is trivial. If not

Pr(∼F,Γ ∪∆) = (1− Pr(F,Γ ∪∆)) POS.9
Pr(F,Γ ∪∆) = 0 POS.11
Pr(∼F,Γ ∪∆) = 1 Algebra
Γ⇒ ∼F is valid Definition of validity.

Logical rules

Γ⇒ A

∼A,Γ⇒ C
L∼ is sound.

Proof. If Γ is Pr-abnormal, then by the Theorem 2.14 Γ∪{∼A} is Pr-abnormal
and we are done. Else, let us suppose that Γ is Pr-normal. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆ ∪ {∼A}) = 1 with ∆′ = ∆ ∪ {∼A}
Pr(∼A,Γ ∪∆ ∪ {∼A}) = 1 POS.4
Pr((∼A ∧A,Γ ∪∆ ∪ {∼A}) =

Pr((A ∧ ∼A,Γ ∪∆ ∪ {∼A}) POS.7
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Pr((∼A ∧A,Γ ∪∆ ∪ {∼A}) =
Pr((∼A,Γ ∪∆ ∪ {∼A})
×Pr((A,Γ ∪∆ ∪ {∼A} ∪ {∼A}) POS.6

Pr((A ∧ ∼A,Γ ∪∆ ∪ {∼A}) = 1 Algebra
Γ ∪∆ ∪ {∼A} is Pr-abnormal Theorem 2.15
Γ ∪ {∼A} ∪ {C} is Pr-abnormal Theorem 2.14
Pr(C,Γ ∪∆ ∪ {∼A}) = 1 Definition of abnormality
∼A,Γ⇒ C Definition of validity

A,Γ⇒ C

∼∼A,Γ⇒ C
L∼∼

Proof. For any ∆,

A,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼∼A} ∪∆) = 1 POS.9 (3) and Theorem 2.5
∼∼A,Γ⇒ C Definition of validity

Γ⇒ A

Γ⇒ ∼∼A R∼∼

Proof. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(∼∼A,Γ ∪∆) = 1 POS.9 (3)
Γ⇒ ∼∼A Definition of validity

A,B,Γ⇒ C

A ∧B,Γ⇒ C
L∧

Proof. For any ∆,

A,B,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A,B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {A ∧B} ∪∆) = 1 POS.10
A ∧B,Γ⇒ C Definition of validity
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Γ⇒ A Γ⇒ B

Γ⇒ A ∧B R∧

Proof. For any ∆,

Γ⇒ A Hypothesis
Γ⇒ B Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(B,Γ ∪∆) = 1 Definition of validity
Pr(B,Γ ∪∆ ∪ {A}) = 1 Theorem 2.11
Pr(A ∧B,Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {A}) POS.6
Pr(A ∧B,Γ ∪∆) = 1× 1 = 1 Algebra
Γ⇒ A ∧B Definition of validity

A,Γ⇒ C B,Γ⇒ C

A ∨B,Γ⇒ C
L∨

Proof. For any ∆,

A,Γ⇒ C Hypothesis
B,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {A ∨B} ∪∆) = 1 POS.13
A ∨B,Γ⇒ C Definition of validity

Γ⇒ A

Γ⇒ A ∨B R∨1

Proof. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(A ∨B,Γ ∪∆) = 1 DF.2
Γ⇒ A ∨B Definition of validity

Γ⇒ B

Γ⇒ A ∨B R∨2
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Proof. Trivial by the soundness of R∨1 and Theorem 2.4

∼A,Γ⇒ C ∼B,Γ⇒ C

∼(A ∧B),Γ⇒ C
L∼∧

Proof. For any ∆,

∼A,Γ⇒ C Hypothesis
∼B,Γ⇒ C

Hypothesis
Pr(C,Γ ∪ {∼A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼(A ∧B)} ∪∆) = 1 POS.15
∼(A ∧B),Γ⇒ C Definition of validity

Γ⇒ ∼A
Γ⇒ ∼(A ∧B)

R∼∧1

Proof. For any ∆,

Γ⇒ ∼A Hypothesis
Pr(∼A,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆) = 0 Theorem 2.12
Pr(∼(A ∧B),Γ ∪∆) =

1− Pr((A ∧B),Γ ∪∆) POS.9 (1)
Pr((A ∧B),Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {A}) POS.6
Pr((A ∧B),Γ ∪∆) = 0 Algebra
Pr(∼(A ∧B),Γ ∪∆) = 1− 0 = 1 Algebra
Γ⇒ ∼(A ∧B) Definition of validity

Γ⇒ ∼A
Γ⇒ ∼(A ∧B)

R∼∧2

Proof. Trivial from the soundness of R∼∧1 and POS.7.

∼A,∼B,Γ⇒ C

∼(A ∨B),Γ⇒ C
L∼∨
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Proof. For any ∆

∼A,∼B,Γ⇒ C Hypothesis
Pr(C,Γ ∪∆ ∪ {∼A,∼B}) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {∼(A ∨B)}) = 1 POS.14
∼(A ∨B),Γ⇒ C Definition of validity

Γ⇒ ∼A Γ⇒ ∼B
Γ⇒ ∼(A ∨B)

R∼∨

Proof. For any ∆,

Γ⇒ ∼A Hypothesis
Γ⇒ ∼B Hypothesis
Pr(∼A,Γ ∪∆) = 1 Definition of validity
Pr(∼B,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆) = 0 Theorem 2.12
Pr(B,Γ ∪∆) = 0 Theorem 2.12
Pr(A ∨B,Γ ∪∆) = 0 POS.5, POS.6 and algebra
Pr(∼(A ∨B),Γ ∪∆) = 1 POS.9 (1)
Γ⇒ ∼(A ∨B) Definition of validity

Γ⇒ A B,Γ⇒ C

A ⊃ B,Γ⇒ C
L ⊃

Proof. For any ∆,

Γ⇒ A Hypothesis
B,Γ⇒ C Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {B}) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {B}) =

Pr(C,Γ ∪∆ ∪ {(A ⊃ B)}) POS.12
Pr(C,Γ ∪∆ ∪ {(A ⊃ B)}) = 1 Algebra
A ⊃ B,Γ⇒ C Definition of validity

A,Γ⇒ B

Γ⇒ A ⊃ B R ⊃
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Proof.

A,Γ⇒ B Hypothesis
Pr(B,Γ ∪∆ ∪ {A}) = 1 Definition of validity
Pr(A ⊃ B,Γ ∪∆) = 1 POS.8
Γ⇒ A ⊃ B Definition of validity

A,∼B,Γ⇒ C

∼(A ⊃ B),Γ⇒ C
L∼⊃

Proof. For any ∆,

A,∼B,Γ⇒ C Hypothesis
Pr(C,Γ ∪∆ ∪ {A,∼B} = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {A ∧ ∼B} = 1 POS.10
Pr(C,Γ ∪∆ ∪ {∼(A ⊃ B)} = 1 Theorem 2.6
∼(A ⊃ B),Γ⇒ C Definition of validity

Γ⇒ A Γ⇒ ∼B
Γ⇒ ∼(A ⊃ B)

R∼⊃

Proof. For any ∆,

Γ⇒ A Hypothesis
Γ⇒ ∼B Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(∼B,Γ ∪∆) = 1 Definition of validity
Pr(∼(A ⊃ B),Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(∼B,Γ ∪∆ ∪ {A}) POS.9 (2)
Pr(∼B,Γ ∪∆) = Pr(∼B,Γ ∪∆ ∪ {A}) = 1 Theorem 2.11
Pr(∼(A ⊃ B),Γ ∪∆) = 1 Algebra
Γ⇒ ∼(A ⊃ B) Definition of validity

A[t|x],Γ⇒ C

∀xA,Γ⇒ C
L ∀

Proof. We have to show that for any Pr, A,C, t,Γ, if Pr(C,Γ∪{A[t|x]}∪∆) = 1
for all ∆, then Pr(C,Γ ∪ {∀xA} ∪∆) = 1 for all ∆.
This corresponds exactly to what POS.18 says.
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Γ⇒ A[y|x]

Γ⇒ ∀xA R ∀ where y is not free in Γ and y is x or y is not free in A.

Proof. Let t1, . . . , tn, . . . be an enumeration of all the terms that are free for x
in A.

Γ⇒ A[y|x] Hypothesis
Pr(A[y|x],Γ ∪∆) = 1 Definition of validity
Pr(A[t1|x],Γ ∪∆) = 1 POS.20

. .

. .

. .
Pr(A[tn|x],Γ ∪∆) = 1 POS.20
Pr(A[t1|x] ∧ . . .∧, A[t1|x],Γ ∪∆) = 1 DF.10 n times, Thm 2.11
lim
n→∞

Pr((A[ti1 |x] ∧ . . . ∧A[tin |x]),Γ ∪∆) = 1 Elementary calculus

Pr(∀xA,Γ ∪∆)) = 1 POS.16
Γ⇒ ∀xA Definition of validity

A[y|x],Γ⇒ C

∃xA,Γ⇒ C
L ∃ where y is not free in Γ and C and y is x or y is

not free inA.

Proof. This corresponds exactly to what POS.19 says.

Γ⇒ A[t|x]

Γ⇒ ∃xA R ∃

Proof. The proof is quite similar to that of R ∀ and left to the reader.

The proofs for the rules with strong negation of quantifiers are dual of the
preceding ones and are left to the reader.

This completes the proof of soundness.

�
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4 Completeness

The strategy we use to prove completeness is the following. Following Kripke’s
idea [6, 1, 5] for designing models for intuitionistic logic, we define a 3-valued
model{1, 0, u} where the three values are standing respectively for true, false
and unknown. Counter to what we have said at the beginning of this paper,
in this very particular model structure, u can be considered as a value. We
then show that any consistent set of sentences of SCILSN admits a 3-valued
model. Using this model, we define partial conditional probability functions
taking only the three values and we finally show that these functions sat-
isfy DF.1-DF.2 and POS.3-POS.20. Calling these partial probability functions
partial opinated functions, we show that every consistent set defines a partial
opinated function, which is stronger than to show that every consistent set
defines a partial probability function. Moreover, this model is canonical : if A
and Γ are such that Γ /⇒ A, then there is a ∆ such that Pr(A,Γ ∪∆) 6= 1.

Definition 4.1. A Deductively Closed Saturated Set (DCSS) is a set of wffs
∆ such that
(i) If ∆⇒ A, then A ∈ ∆ (closure);
(ii) If A ∨B ∈ ∆, then A ∈ ∆ or B ∈ ∆ (saturation);
(iii) It is not the case that ∆⇒ F (consistency).

Definition 4.2. If Γ is consistent, U(Γ) = {∆ : ∆ is aDCSS and∆ ⊆ Γ}.

Theorem 4.3. If Γ /⇒ A, there is a DCSS ∆ such that Γ ⊆ ∆ and ∆ /⇒ A.

Proof. (This proof is not constructive.)
A is called the test formula. Let E =< E0, E1, E2, . . . > be an enumeration
of all wffs where each wff appears denumerably many times. We define the
following sequence of sets:

Γ0 = Γ;
.
.
.

Γk+1 = Γk if Γk ∪ {Ek} ⇒ A;

Γk+1 = Γk ∪ {Ek} if Γk ⇒ Ek, and Ek is not (B ∨ C);

if Ek is (B ∨ C),
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Γk+1 = Γk ∪ {Ek} ∪ {B} if Γk ∪ {Ek} ∪ {B} /⇒ A
else Γk+1 = Γk ∪ {Ek} ∪ {C}.

We define

∆ =
∞⋃
k=0

Γk

Claim

(1) ∆ /⇒ A

We first show that, for any k, Γk /⇒ A.

For k = 0, it is trivial. Let us suppose that Γk /⇒ A, we show that Γk+1 /⇒A.

If Γk+1 = Γk∪{Ek} because Γk ⇒ Ek, and Ek is not (B∨C), we get the result
by the Cut rule.

Let us suppose that Ek is (B ∨ C).

If Γk+1 = Γk ∪ {Ek} ∪ {B} because Γk+1 /⇒ A, it is trivial;

If Γk+1 = Γk ∪ {Ek} ∪ {C} because Γk ∪ {Ek} ∪ {B} ⇒ A, we have to show
that Γk ∪ {Ek} ∪ {C} /⇒ A.

Let us suppose that Γk ∪ {Ek} ∪ {C} ⇒ A.

From L∨ we have:

Γk ∪ {Ek} ∪ {(B ∨ C)} ⇒ A. But Ek is (B ∨ C), so Γk ∪ {Ek} ⇒ A which
contradicts the hypothesis.

(2) If ∆⇒ B, then B ∈ ∆ because B is one of the Ek.

(3) ∆ is saturated, i.e., if A ∨ B ∈ ∆, then A ∈ ∆ or B ∈ ∆. It is a trivial
consequence of the definition of ∆.

(4) ∆ is consistent. This follows from the fact that ∆ /⇒ A.
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The most interesting consequence of Theorem 4.3 is that if A is a classical
tautology and Γ is such that Γ /⇒ A, then there is a DCSS ∆ such that Γ ⊆ ∆
and ∆ /⇒ A.

Corollary 4.4. If Γ is consistent, there is a DCSS ∆ such that Γ ⊆ ∆.

Proof. As Γ is consistent, there is a A such that Γ /⇒ A. We define a DCSS
∆ starting from Γ using A as the test formula.

Corollary 4.5. Let Γ be a consistent set. If there is no DCSS ∆ such that
Γ ⊆ ∆ and A ∈ ∆, then Γ ∪ {A} is inconsistent.

Proof. This is a trivial consequence of Corollary 4.4.

Corollary 4.6. If A ∈ ∆ for any DCSS ∆ such that Γ ⊆ ∆, then Γ⇒ A.

Proof. The above is the contraposition of Theorem 4.3.

Theorem 4.7. Let W be the set of all DCSS and ∆ ∈W . If A ⊃ B ∈ ∆ and
∆′ ∈W with ∆ ⊆ ∆′ and A ∈ ∆′, then B ∈ ∆′.

Proof. Let ∆,∆′ ∈W , A ⊃ B ∈ ∆, ∆ ⊆ ∆′ and A ∈ ∆′. We have A ⊃ B ∈ ∆′

and by

∆′ ⇒ A B,∆′ ⇒ B

A ⊃ B,∆′ ⇒ B
L ⊃

and by closure B ∈ ∆′.

Theorem 4.8. Let Γ be a consistent set of wffs such that Γ /⇒ A ⊃ B. Then
there is a DCSS ∆ such that Γ ⊆ ∆, A ∈ ∆ and B /∈ ∆.

Proof. We have A,Γ /⇒ B, Otherwise, by R ⊃,
A,Γ⇒ B

Γ⇒ A ⊃ B which contra-

dicts the hypothesis. We then start again the Theorem 4.3 using Γ0 = Γ∪{A}
and B as test formula.
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Definition 4.9. Let Γ be a consistent set of wffs. U(Γ) = {∆ : Γ ⊆ ∆ and
∆ is aDCSS.

Theorem 4.10. Let ∆ ∈ U(Γ). If B ∈ ∆, then ∆ ∈ U(Γ ∪ {B}).

Proof. (This proof is not constructive)
If B ∈ Γ, the proof is trivial. Let us suppose it is not the case that B ∈ Γ. Let
E =< E0, E1, E2, . . . > be an enumeration of all the wffs of ∆ where every
A ∈ ∆ appears denumerably many times. Let us consider the following two
sequences:

∆0 = Γ ∆′0 = Γ ∪ {B}
. .
. .
. .

∆i+1 = ∆i ∪ {Ei} ∆i+1 = ∆′i ∪ {Ei}
. .
. .
. .

It is clear that ∆ =
∞⋃
k=0

∆k.

It is also clear that, for any i, ∆i ⊆ ∆′i.
Let k be the smallest integer such that Ek is B. We then have ∆k+1 = ∆′k+1

and for any k′ ≥ k + 1, ∆k′ = ∆′k′ .

∆′ =
∞⋃
k=0

∆′k = ∆. But ∆′ ∈ U(Γ ∪ {B}).

Corollary 4.11. If A ∈ ∆ for any ∆ ∈ U(Γ), then U(Γ) = U(Γ ∪ {A}).

Proof. It is a trivial consequence of Theorem 4.10.

Theorem 4.12. Let ∆ be a DCSS such that A, A ⊃ B ∈ ∆. Then B ∈ ∆.

Proof. The above is a trivial consequence of Theorem 4.7.

Theorem 4.13. For any Γ and any A1, . . . , An, (A1 ∧ . . . ∧ An),Γ ⇒ C iff
A1, . . . , An,Γ⇒ C
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Proof. We just give a sketch of the proof which is quite trivial.
→

We have:

A1, . . . , An,Γ⇒ A1 A1, . . . , An,Γ⇒ A2

A1, . . . , An,Γ⇒ A1 ∧A2,
R∧

A1, . . . , An,Γ⇒ A1 ∧A2 A1, . . . , An,Γ⇒ A3

A1, . . . , An,Γ⇒ A1 ∧A2 ∧A3
R∧

After (n− 1) steps, we get:

A1, . . . , An,Γ⇒ A1 ∧A2 ∧ . . . ∧An−1 A1, . . . , An,Γ⇒ An

A1, . . . , An,Γ⇒ A1 ∧ . . . ∧An
R∧

By the Cut rule, if (A1 ∧ . . . ∧An),Γ⇒ C, then A1, . . . , An,Γ⇒ C.

←

Let us suppose that A1, . . . , An,Γ⇒ C. We have

A1, . . . , An−2, An−1, An,Γ⇒ C

A1, . . . , An−2, (An−1 ∧An),Γ⇒ C
L∧

Applying L ∧ (n− 1) times, we get

A1, . . . , An,Γ⇒ C

(A1 ∧ . . . ∧An),Γ⇒ C
L∧

Theorem 4.14. For any Γ and any A1, . . . , An, (A1 ∨ . . .∨An),Γ⇒ C iff for
any i, 1 ≤ i ≤ n, Ai,Γ⇒ C

The proof is quite elementary and is left to the reader.

Theorem 4.15.
(∼A1 ∧ . . . ∧ ∼An),Γ⇒ C

(∼(A1 ∨ . . . ∨An)),Γ⇒ C
and

(∼(A1 ∨ . . . ∨An)),Γ⇒ C

(∼A1 ∧ . . . ∧ ∼An),Γ⇒ C

We merely give a sketch of the proof. By Theorem 4.13 we have, if
A1, . . . , An,Γ⇒ C then (A1 ∧ . . . ∧An),Γ⇒ C.
We show that ∼A1, . . . ,∼An,Γ⇒ (∼(A1 ∨ . . .∨An)) and the result follows by
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the Cut rule.
By R∼∨, we have ∼A1, . . . ,∼An,Γ ⇒ (∼(A1 ∨ A2)). Applying R∼∨ (n − 1)
times, we get the result we are looking for.

For the converse, we have to show that (∼(A1 ∨ . . . ∨ An)),Γ ⇒ (∼A1 ∧
. . . ∧ ∼An). In order to do this, we proceed in two steps. We first show that
if ∼A1, . . . ,∼An,Γ ⇒ C then (∼(A1 ∨ . . . ∨ An)),Γ ⇒ C using L∼∨ (n − 1)
times. Then we use Theorem 4.13 which implies that ∼A1, . . . ,∼An,Γ ⇒
(∼A1 ∧ . . . ∧ ∼An).

�

Theorem 4.16.
(∼A1 ∨ . . . ∨ ∼An),Γ⇒ C

(∼(A1 ∧ . . . ∧An)),Γ⇒ C
and

(∼(A1 ∧ . . . ∧An)),Γ⇒ C

(∼A1 ∨ . . . ∨ ∼An),Γ⇒ C

The proof is left to the reader.

Theorem 4.17. If U(Γ) = U(Γ′), then U(Γ ∪ {A}) = U(Γ′ ∪ {A}).

Proof. Let ∆ ∈ U(Γ and E =< E0, E1, E2, . . . > be an enumeration of all the
wffs where every wff appears denumerably many times.
We define the following sequence Λ0, Λ1, Λ2, . . . Λn, . . . :

Λ0 = ∆ ∪ {A};
.
.
.

Λn+1 = Λn ∪ {En} if Λn ⇒ En and En is not (B ∨ C);
Λn+1 = Λn ∪ {En} ∪ {B} if Λn ⇒ En and En is (B ∨ C) and

Λn ∪ {En} ∪ {B} is consistent;
Λn+1 = Λn ∪ {En} ∪ {C} otherwise;

.

.

.

Let Λ∆ =
∞⋃
n=0

Λn

Claim: Λ ∈ U(Γ ∪ {A}).

It is clear that Λ∆ is a DCSS and that Γ ∪ {A} ∈ Λ∆. As U(Γ) = U(Γ′), a
similar argument leads us to conclude that Γ′ ∪ {A} ∈ Λ∆.
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In order to conclude that U(Γ ∪ {A}) = U(Γ′ ∪ {A}), we have to show that,
for any Λ ∈ U(Γ ∪ {A}), there is a ∆′ ∈ U(Γ) such that Λ = Λ∆′ .
Let Λ ∈ U(Γ ∪ {A}) and E′ =< E′0, E

′
1, E

′
2, . . . > be an enumeration of the

wffs of Λ where every wff appears denumerably many times. We define the
following sequence of sets:

Λ′0 = ∅ if E′0 ⇒ A, Λ′0 = {E′0} otherwise;
.
.
.

Λ′n+1 = Λ′n if Λ′n ∪ {E′n} ⇒ A, Λ′n ∪ {E′n} otherwise;
.
.
.

Let Λ′ =
∞⋃
n=0

Λ′n

Claims:
(1) Λ′ ∈ U(Γ)
(2) If Λ′ ⇒ B then B ∈ Λ′

(3) If (B ∨ C) ∈ Λ′, then B ∈ Λ′ or C ∈ Λ′

(1) Λ′ ∈ U(Γ) Trivial
(2) If Λ′ ⇒ B then B ∈ Λ′

Λ′ ⇒ B Assumption
There is a Λ′n such that Λ′n ⇒ B A proof in Λ′ is finite.
There is a m such that B is E′n+m Definition of E′

B ∈ Λ′n+m+1 Definition of Λ′n+m+1

B ∈ Λ′ Definition of Λ′

(3) (B ∨ C) ∈ Λ′ Assumption
B /∈ Λ′ and C /∈ Λ′ Assumption
Λ′ ∪ {B} ⇒ A and Λ′ ∪ {C} ⇒ A Definition of Λ′

Λ′ ∪ {(B ∨ C)} ⇒ A L ∨
A ∈ Λ′ Contradiction

Definition 4.18. The pair < W,⊆> is called the Kripkean canonical frame.
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Definition 4.19. Let A∗ be B or ∼B according to whether A is ∼B or B.

Definition 4.20. The canonical partial probabilistic model is the 3-uple
< W,⊆ ,Pr<W,⊆ > > where Pr<W,⊆ > : L × 2L → {0, 1 , u} is such that, for
any A, Γ

(i) If A is a literal,

Pr<W,⊆ >(A,Γ) =


1 if A ∈ ∆ for any ∆ ∈ U(Γ)

0 if A∗ ∈ ∆ for any ∆ ∈ U(Γ)

u otherwise

(ii) If ∼∼B,

Pr<W,⊆ >(A,Γ) =


1 if B ∈ ∆ for any ∆ ∈ U(Γ)

0 if ∼B ∈ ∆ for any ∆ ∈ U(Γ)

u otherwise

(iii) If A is B ∧ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ andC ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ or∼C ∈ ∆

u otherwise

(iv) If A is ∼(B ∧ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ or∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ and C ∈ ∆

u otherwise

(v) If A is B ∨ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ orC ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ and∼C ∈ ∆

u otherwise
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(vi) If A is ∼(B ∨ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ and∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ orC ∈ ∆

u otherwise

(vii) If A is B ⊃ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ) such thatB ∈ ∆, C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ and∼C ∈ ∆

u otherwise

(viii) If A is ∼(B ⊃ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ and∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ orC ∈ ∆

u otherwise

(ix) If A is ∀xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B[y|x] ∈ ∆ for any y not free in ∀xB

0 if for any ∆ ∈ U(Γ), ∼B[t|x] ∈ ∆ for some t free for x in B

u otherwise

(x) If A is ∼∀xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B[t|x] ∈ ∆ for some t free for x in B

0 if for any ∆ ∈ U(Γ), B[y|x] ∈ ∆ for any t free in ∀xB

u otherwise
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(xi) If A is ∃xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B[t|x] ∈ ∆ for some t free for x in B

0 if for any ∆ ∈ U(Γ), ∼B[y|x] ∈ ∆ for any y not free in ∃xB

u otherwise

(xii) If A is ∼∃xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B[y|x] ∈ ∆ for any y free x in ∼∃xB

0 if for any ∆ ∈ U(Γ), B[t|x] ∈ ∆ for some t free for x in B

u otherwise

Theorem 4.21. (We drop the index.) For any Pr, A and Γ, if, for any
∆ ∈ U(Γ), A ∈ ∆, then Pr(A,Γ) = 1

Proof.
(i) A is a literal. It is trivial by definition 4.20(i).

(ii) A is ∼∼B. By definition 4.20(ii), Pr(A,Γ) = 1 if B ∈ ∆ for any ∆ ∈ U(Γ).
But by R∼∼, ∼∼B ∈ ∆.

(iii) A is B ∧ C. By definition 4.20(iii), Pr(A,Γ) = 1 if B ∈ ∆ and C ∈ ∆ for
any ∆ ∈ U(Γ). In that case, by R∧, B ∧ C ∈ ∆ for any ∆ ∈ U(Γ).

(iv) A is ∼(B ∧C). By definition 4.20(iv), Pr(A,Γ) = 1 if ∼B ∈ ∆ or ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∼∧1 or R∼∧2, ∼(B ∧ C) ∈ ∆ for any
∆ ∈ U(Γ).

(v) A is B ∨ C. By definition 4.20(v), Pr(A,Γ) = 1 if B ∈ ∆ or C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∨1 or R∨2, B ∨C ∈ ∆ for any ∆ ∈ U(Γ).

(vi) A is ∼(B ∨ C). By definition 4.20(vi), Pr(A,Γ) = 1 if ∼B ∈ ∆ and
∼C ∈ ∆ for any ∆ ∈ U(Γ). In that case, by R∼∨, ∼(B ∨ C) ∈ ∆ for any
∆ ∈ U(Γ).

(vii) A is B ⊃ C. By definition 4.20(vii), Pr(A,Γ) = 1 if for any ∆ ∈ U(Γ)
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such that if B ∈ ∆, then C ∈ ∆. In that case, by R ⊃, for any ∆ such that
B ∈ ∆, B ⊃ C ∈ ∆.

(viii) A is ∼(B ⊃ C). By definition 4.20(viii), Pr(A,Γ) = 1 if B ∈ ∆ and
∼C ∈ ∆ for any ∆ ∈ U(Γ). In that case, by R∼⊃, ∼(B ⊃ C) ∈ ∆ for any
∆ ∈ U(Γ).

Theorem 4.22. For any Pr, A and Γ, if, for any ∆ ∈ U(Γ),∼A ∈ ∆, then
Pr(A,Γ) = 0.

Proof.
(i) A is a literal. If A is p, then A∗ is ∼p ∈ ∆. If A is ∼p, A∗ is p and by R∼∼,
∼∼p ∈ ∆ i.e. ∼A ∈ ∆.

(ii) A is∼∼B. By definition 4.20(ii), Pr(A,Γ) = 0 if∼B ∈ ∆ for any ∆ ∈ U(Γ).
By R∼∼, ∼∼∼B ∈ ∆ for any ∆ ∈ U(Γ) i.e. ∼A ∈ ∆.

(iii) A is B ∧C. By definition 4.20(iii), Pr(A,Γ) = 0 if ∼B ∈ ∆ or ∼C ∈ ∆ for
any ∆ ∈ U(Γ). By R∼∧1 or R∼∧2, ∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ).

(iv) A is ∼(B ∧ C). By definition 4.20(iv), Pr(A,Γ) = 0 if B ∈ ∆ and C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∧, B ∧ C ∈ ∆ for any ∆ ∈ U(Γ) and by
R∼∼, ∼∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ).

(v) A is B ∨ C. By definition 4.20(v), Pr(A,Γ) = 0 if ∼B ∈ ∆ and ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∼∨, ∼(B ∨ C).

(vi) A is ∼(B ∨ C). By definition 4.20(vi), Pr(A,Γ) = 0 if B ∈ ∆ or C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∨1 or R∨2, B ∨C ∈ ∆ for any ∆ ∈ U(Γ)
and by R∼∼, ∼∼(B ∨ C) ∈ ∆ for any ∆ ∈ U(Γ) .

(vii) A is B ⊃ C. By definition 4.20(vii), Pr(A,Γ) = 0 if B ∈ ∆ and ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∧, B ∧C ∈ ∆ for any ∆ ∈ U(Γ). In that
case, by R∼⊃, ∼(B ⊃ C) ∈ ∆ for any ∆ ∈ U(Γ).

Theorem 4.23. For any Pr,A and Γ, Pr(A,Γ) = 1 iff for any ∆ ∈ U(Γ), A ∈
∆ and Pr(A,Γ) = 0 iff or any ∆ ∈ U(Γ),∼A ∈ ∆.

Proof. The ifs come from Theorem 4.21 and Theorem 4.22. The only ifs come
from the u otherwise clause of definition 4.20.
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Theorem 4.24. In the canonical model, for any Γ and any Pr, Γ is consistent
iff Γ is Pr-normal.

Proof.
(1) If Γ is consistent, then Γ /⇒ F . Furthermore, F /∈ ∆ for any ∆ ∈ U(Γ)

and by Theorem 4.23, Γ⇒ ∼F and thus Pr(F,Γ) = 0. So, Γ is Pr-normal.

(2) If Γ is inconsistent then Γ⇒ F . By axiom 2, for any C, F,Γ⇒ C and
by the Cut rule, Γ⇒ C. By Theorem 4.21, Pr(C,Γ) = 1 and Γ is Pr-abnormal.

So, with respect to the canonical model, the two expressions are equivalent.

Theorem 4.25. The canonical model gives to the connectives ∧ and ∨ the
value of the Kleene strong connectives in the following sense:

Pr<W,⊆ >(A ∧B,Γ) =


1 iff Pr<W,⊆ >(A,Γ) = Pr<W,⊆ >(B,Γ) = 1

0 iff Pr<W,⊆ >(A,Γ) = 0 or Pr<W,⊆ >(B,Γ) = 0

u otherwise
and

Pr<W,⊆ >(A ∨B,Γ) =


1 iff Pr<W,⊆ >(A,Γ) = 1 or Pr<W,⊆ >(B,Γ) = 1

0 iff Pr<W,⊆ >(A,Γ) = Pr<W,⊆ >(,Γ) = 0

u otherwise

Proof. The proof is straightforward using Theorem 4.21 and Theorem 4.22 and
is left to the reader.

Theorem 4.26. If Pr(A,Γ) = u and Pr(A,Γ ∪ {B}) = 0, then Γ ∪ {A,B}) is
inconsistent.

Proof. Let us suppose that Γ∪{A,B}) is consistent. In that case U(Γ∪{A,B})
is not empty. So there is a ∆ ∈ U(Γ) which contains A and B and thus
Pr(A,Γ ∪ {B}) 6= 0.

We need to make sure of one last thing: Does Pr<W,⊆ > define a partial
conditional probability function?
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Theorem 4.27. Pr<W,⊆ > satisfies DF.1-DF.2 and POS.3-POS.20.

Proof. (We drop the index.)

Let us begin with

POS. 7 Pr(
n∧

i=1
Ai,Γ) = Pr(

n∧
i=1

Apern(i),Γ)

We proceed by induction on the number of ∧.

n = 1
We have to prove that, when both are defined, Pr(A1∧A2,Γ) = Pr(A2∧A1,Γ).
We have two cases:
(1) Pr(A1 ∧A2,Γ) = 1 and
(2) Pr(A1 ∧A2,Γ) = 0

(1)
Pr(A1 ∧A2,Γ) = 1 Assumption
(A1 ∧A2) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A1, A2 ∈ ∆ for any ∆ ∈ U(Γ) Definition 4.20(iii)
(A2 ∧A1) ∈ ∆ for any ∆ ∈ U(Γ) R∧ and closure
Pr(A2 ∧A1,Γ) = 1 Theorem 4.23

(2)
Pr(A1 ∧A2,Γ) = 0 Assumption
(∼(A1 ∧A2)) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A1 ∈ ∆orA2 ∈ ∆ for any ∆ ∈ U(Γ) Definition 4.20(iv)
(A2 ∧A1) ∈ ∆ for any ∆ ∈ U(Γ) R∼∧1 or R∼∧2 and closure
Pr(A2 ∧A1,Γ) = 0 Theorem 4.23

Let us suppose it is the case for n− 1 conjuncts. We have

Pr(
n∧

i=1
Ai,Γ) = Pr(A1 ∧ (

n∧
i=2

Ai,Γ) Definition of Pr(
n∧

i=1
Ai,Γ)

= Pr(Apern(1) ∧ (
n∧

i=2
Apern(i),Γ) Induction hypothesis

= Pr(
n∧

i=1
Apern(i),Γ) Algebra

DF. 1 If Pr(Aj ,Γ) = 0 for some 1 ≤ j ≤ n, then Pr(
n∧

i=1
Ai,Γ) = 0;

Let pern be a permutation such that pern(1) = j
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Pr(Aj ,Γ) = 0 Assumption
∼Aj ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23

∼(Aj ∧ (
n∧

i=2
Ai,Γ)) ∈ ∆ for any ∆ ∈ U(Γ) R∼1 + closure

∼(Apern(1) ∧ (
n∧

i=2
Apern(i))) ∈ ∆ for any ∆ ∈ U(Γ) Apern(1) = Aj

Pr(
n∧

i=1
Apern(i)) = 0 Theorem 4.23

Pr(
n∧

i=1
Ai) = 0 Pr satisfies DF. 7

DF. 2 If Pr(Aj ,Γ) = 1 for some 1 ≤ j ≤ n, then Pr(
n∨

i=1
Ai,Γ) = 1.

The proof is quite similar to the preceding one.

POS.3 0 ≤ Pr(A,Γ) ≤ 1.
Trivial.

POS.4 If A ∈ Γ, then Pr(A,Γ) = 1.
Trivial.

POS.6 Pr(
n∧

i=1
Ai,Γ) = Pr(A1,Γ)× Pr(

n∧
i=2

Ai,Γ ∪ {A1}).

We have two cases.

(1) At least one of the Aj is such that Pr(Aj ,Γ) = 0. By the adequation

of DF. 1, Pr(
n∧

i=1
Ai,Γ) = 0.

In that case, either j = 1 or j 6= 1. In both cases, Pr(A1,Γ)×Pr(
n∧

i=2
Ai,Γ∪

{A1}) = 0 because either Pr(A1,Γ) = 0 or, by the adequation of DF. 1 again,

Pr(
n∧

i=2
Ai,Γ ∪ {A1}) = 0.

(2) All of the Aj ’s are such that Pr(Aj ,Γ) = 1.

In that subcase, by the definition of 4.20 (iii) for all j, Aj ∈ ∆ for all

∆ ∈ U(Γ) and applying R∧ n− 1 times and by the closure, Pr(
n∧

i=1
Ai,Γ) = 1,
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Pr(Aj ,Γ) = 1 and Pr(
n∧

i=2
Ai,Γ ∪ {A1}) = Pr(

n∧
i=2

Ai,Γ) = 1 (because Γ =

Γ ∪ {A1}). We get 1 = 1× 1 and we are done.

POS.5 Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ)− Pr(A1 ∧ (
n∨

i=2
Ai,Γ)).

We merely have to verify all the possibilities when all the probabilities are

defined. When Pr(A1,Γ) and Pr(
n∨

i=2
Ai,Γ) are defined, Pr(A1∧(

n∨
i=2

Ai,Γ)) and

Pr(
n∨

i=1
Ai,Γ) are also defined and by definition 4.20 (iii) and (v), we have the

following table:

Pr(A1,Γ) Pr(
n∨

i=2
Ai,Γ) Pr(A1 ∧ (

n∨
i=2

Ai,Γ)) Pr(
n∨

i=1
Ai,Γ)

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

One can easily see that Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ) − Pr(A1 ∧

(
n∨

i=2
Ai,Γ)).

POS.9 If Γ is Pr-normal, then Pr(∼A,Γ) =
(1) 1− Pr(A,Γ) if A is an atom or F or (B ∧ C) or (B ∨ C) or ∀xB or ∃xB;
(2) Pr(B,Γ)× Pr(∼C,Γ ∪ {B}) if A is (B ⊃ C);
(3) Pr(B,Γ) if A is ∼B.

(1) If A is an atom or F or (B ∧ C) or (B ∨ C) or ∀xB or ∃xB.

(i) Pr(∼p,Γ) = 1

Pr(∼p,Γ) = 1 Assumption
iff ∼p ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
iff Pr(p,Γ) = 0 Theorem 4.20
iff Pr(∼p,Γ) = 1− Pr(p,Γ) Algebra
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(ii) Pr(∼p,Γ) = 0
Pr(∼p,Γ) = 0 Assumption
iff ∼∼p ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
iff p ∈ ∆ for any ∆ ∈ U(Γ) L∼∼ and R∼∼
iff Pr(p,Γ) = 1 Theorem 4.20
iff Pr(∼p,Γ) = 1− Pr(p,Γ) Algebra

(iii) If A is F
Pr(∼F,Γ) = 1 iff ∼F ∈ ∆ for any ∆ ∈ U(Γ) which is the case by A3.

But Pr(F,Γ) = 0 iff ∼F ∈ ∆ for any ∆ ∈ U(Γ) which is the case by A3.
Pr(∼F,Γ) = 1− Pr(F,Γ) = 1 by algebra.

(iv)Pr(∼F,Γ) = 1 is not the case if Γ is consistent.

(v) We show that

(α) Pr(∼(B ∧ C),Γ) = 1− Pr((B ∧ C),Γ)

Pr(∼(B ∧ C),Γ) = 1 Assumption
∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
Pr((B ∧ C),Γ) = 0 Theorem 4.23
1 = 1− 0 Algebra

Pr(∼(B ∧ C),Γ) = 0 Assumption
(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
Pr((B ∧ C),Γ) = 1 Theorem 4.23
0 = 1− 1 Algebra

(β) Pr(∼(B ∧ C),Γ) = 1− Pr((B ∧ C),Γ)

This case is as trivial as (α) and is left to the reader.

Cases (2) and (3) are also trivial.

POS.10 Pr(A,Γ ∪ {
n∧

i=1
Ai}) = Pr(A,Γ ∪ {A1, . . . , An})

It is a straightforward consequence of Theorem 4.13.

POS.8 Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A})
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We have to show that

(1) Pr(A ⊃ B,Γ) = 1 iff Pr(B,Γ ∪ {A}) = 1

and

(2) Pr(A ⊃ B,Γ) = 0 iff Pr(B,Γ ∪ {A}) = 0.

(1) We have to prove that, if A ⊃ B ∈ ∆ for any ∆ ∈ U(Γ) then B ∈ ∆
for any ∆ ∈ U(Γ ∪ {A})

Pr(A ⊃ B,Γ) = 1 Assumption
A ⊃ B ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A ⊃ B,A ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) U(Γ ∪ {A}) ⊆ U(Γ), A ∈ Γ ∪ {A}
B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.12
Pr(B,Γ ∪ {A}) = 1 Theorem 4.23

We also have to prove the converse, i.e., if Pr(B,Γ ∪ {A}) = 1, then
Pr(A ⊃ B,Γ) = 1.

Pr(B,Γ ∪ {A}) = 1 Assumption
B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.23
∆ ∪ {A} ⇒ B for any ∆ ∈ U(Γ) Corollary 4.6
∆⇒ (A ⊃ B) for any ∆ ∈ U(Γ) R ⊃
(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ) ∆ is a DCSS
Pr(A ⊃ B,Γ) = 1 Theorem 4.23

(2) We have to prove that
If Pr(A ⊃ B,Γ) = 0, then Pr(B,Γ ∪ {A}) = 0.

Pr(A ⊃ B,Γ) = 0 Assumption
∼(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A,∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) PR.5 (2)
Pr(A,Γ) = 1 and Pr(B,Γ) = 0 Theorem 4.23
Pr(B,Γ ∪ {A}) = 0 Corollary 4.11

We also have to prove the converse.
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Pr(B,Γ ∪ {A}) = 0 Assumption
∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.23
A ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Γ ∪ {A} ⊆ ∆
A ∧ ∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) R∧
∼(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) PR.5 (2)
Pr(A ⊃ B,Γ) = 0 Theorem 4.23

POS.12 If, for any ∆, Pr(A,Γ ∪∆) = 1,
then for any B and C, Pr(C,Γ ∪∆ ∪ {B}) = Pr(C,Γ ∪∆ ∪ {(A ⊃ B)})

It is a trivial consequence of L ⊃.

POS.11 If Γ is Pr-normal, then Pr(F,Γ) = 0.

It follows from Ax. 3 that ∼F ∈ ∆ for any ∆ ∈ U(Γ).

POS.13 Pr(C,Γ ∪ {Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ ∪
{

n∨
i=1

Ai}) = 1.

It is a straightforward consequence of L∨ applies (n− 1) times.

POS.15 If Pr(C,Γ ∪ {∼Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ ∪
{∼(

n∧
i=1

Ai})) = 1.

It is a straightforward consequence of L∼∧ applies (n− 1) times.

POS.14 If Pr(C,Γ ∪ {∼A1, . . . ,∼An}) = 1, then Pr(C,Γ ∪ {∼(
n∨

i=1
Ai})) = 1

It is a straightforward consequence of L∼∨ applies (n− 1) times.

POS.16

Pr(∀xA,Γ) = lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) where t1, . . . , tn, . . . is an enumeration

of all the terms free for x in A.

There are two cases.

(1)
Pr(∀xA,Γ) = 1 Assumption
For all ∆ ∈ U(Γ), ∀xA ∈ ∆ Theorem 4.23
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A[ti|x],∆⇒ A[ti|x] axiom A1
A[ti|x] ∈ ∆ for all ti free for x in A L ∀ and closure of ∆

Pr(
n∧

i=1
A[ti|x],Γ) ∈ ∆ R ∧ (n-1) times

Pr(
n∧

i=1
A[ti|x],Γ) = 1 Theorem 4.23

lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) = 1 calculus

(2)
Pr(∀xA,Γ) = 0 Assumption
For all ∆ ∈ U(Γ), ∼∀xA ∈ ∆ Theorem 4.23
∼A[yi|x],∆⇒ ∼A[yi|x] axiom A1
∼A[yi|x] ∈ ∆ for yi not free in A,
∼∀xA and ∆ R∼∀ and the closure of ∆

Pr(A[yi|x],Γ) = 0 Theorem 4.23
Pr(A[tj |x],Γ) = 0 for tj = yi

Pr(
j∧

i=1
A[ti|x],Γ) = 0 validity of DF.1

lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) = 0 calculus + validity of DF.1

POS.17

Pr(∃xA,Γ) = lim
n→∞

Pr(
n∨

i=1
A[yi|x],Γ) where y1, . . . , yn, . . . is an enumeration

of all the variables that are not free in A and Γ.

The proof is quite similar to that of POS.16 and is left to the reader.

POS.18 If Pr(C,Γ ∪ {A[t|x]}) = 1, then Pr(C,Γ ∪ {∀xA}) = 1 where t is free
for x in A.

We show that U(Γ ∪ {∀xA}) ⊆ U(Γ ∪ {A[t|x]})

∆ ∈ U(Γ ∪ {∀xA}) Assumption
A[t|x],∆⇒ A[t|x] axiom A1
∀xA,∆⇒ A[t|x] L∀
A[t|x] ∈ ∆ closure of ∆
U(Γ ∪ {∀xA}) ⊆ U(Γ ∪ {A[t|x]} ∪ {∀xA}) set theory
Pr(C,Γ ∪ {∀xA}) =

Pr(C,Γ ∪ {∀xA} ∪ {A[t|x]}) = 1 Theorem 4.10
+Pr(C,Γ ∪ {A[t|x]}) = 1
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POS.19
If Pr(C,Γ ∪ {A[y|x]}) = 1, then Pr(C,Γ ∪ {∃xA}) = 1 where y is not free

in A, Γ and C.

The proof is similar that of POS.18 and is left to the reader.

POS.20 If Pr(A[y|x],Γ) = 1 with y not free in Γ nor in A (or y = x), then
Pr(A[t|x],Γ) = 1 where t is free for x in A.

Pr(A[y|x],Γ) = 1 Assumption
A[y|x] ∈ ∆ for all ∆ ∈ U(Γ) Theorem 4.23
∀xA ∈ ∆ for all ∆ ∈ U(Γ) R ∀
A[t|x],Γ⇒ A[t|x] A1
∀xA,Γ⇒ A[t|x] L ∀
A[t|x] ∈ ∆ for all ∆ ∈ U(Γ) Closure of ∆
Pr(A[t|x],Γ) = 1 Theorem 4.23

Theorem 4.28. SCILSN is complete according to the partial probabilistic in-
terpretation.

Proof. Let us suppose that Γ /⇒ A. There is a ∆ ∈ U(Γ) such that A /∈ ∆ .
Thus Pr(A,Γ) 6= 1.
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Planar Heyting Algebras for Children

Eduardo Ochs

Abstract

This paper shows a way to interpret (propositional) intuitionistic logic
visually using finite Planar Heyting Algebras (“ZHAs”), that are cer-
tain subsets of Z2. We also show the connection between ZHAs and
the familiar semantics for IPL where the truth-values are open sets: the
points of a ZHA H correspond to the open sets of a finite topological
space (P,OA(P )), where the topology OA(P ) is the order topology on
a 2-column graph (P,A). The logic of ZHAs is between classical and
intuitionistic but different from both; there are some sentences that are
intuitionistically false but that can’t have countermodels in ZHAs — their
countermodels would need three “columns” or more.

In a wider context these ZHAs are interesting because toposes of the
form Set(P,A) are one of the basic tools for doing “Topos Theory for
Children”, in the following sense. We can define “children” as people who
think mathematically in a certain way — as people who prefer to start
from particular cases and finite examples that can be drawn explicitly,
and only then generalize — and we can define a method for working on a
particular case (less abstract, “for children”) and on a general case (“for
adults”) in parallel, using parallel diagrams with similar shapes; we have
some ways of transfering knowledge from the general case to the particular
case, and back. This method is sketched in the introduction.

Except for the introduction this paper is self-contained, and its title
“Planar Heyting Algebras for Children” also has a second sense, different
from the above: it can be read by students who have just taken a basic
course on Discrete Mathematics — who are “children” in the sense that
they don’t have much mathematical maturity — and it prepares these
students to read standard books on Logic that they would otherwise find
a bit too abstract.

This paper is the first in a series of three. Categories and toposes only
appear explicitly in the third one, that is about visualizing geometric
morphisms, and at this moment the method of parallel diagrams has only
been fully formalized for categorical diagrams. Behind the choices of finite
examples and particular cases in this paper there is an attempt to adapt
that method to areas outside Category Theory, but the precise details of
how this is done are left for a future work.



126 E. Ochs
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This paper is the first in a series of three. Let’s refer to them as PH1
(this one), PH2 and PH3, and to the whole series as PH123. A nearly com-
plete working draft of PH2 is available at [Och18], and the extended abstract
[Och19b] shows the core results that will be in PH3.

The objective of the series can be explained in two ways. In the first one
— shallow, and purely mathematical,

• PH1 shows how to interpret IPL in Planar Heyting Algebras (“ZHAs”,
sec.4) and shows that ZHAs are order topologies on two-column graphs
(“2CGs”, sec.14); this is used to show how one can develop visual intu-
ition about IPL. The trickiest part is the implication; the method that
allows one to calculate P → Q by sight in ZHAs has four subcases, and is
discussed in sections 7, 8, and 9. It would probably be obvious to anyone
who has worked enough with lattices, but I believe that it deserves to be
more widely known.

• The paper PH2 extends the correspondence (P,A) H between
2CGs and ZHAs of PH1 to a correspondence ((P,A), Q) (H,J)
between 2CGs “with question marks” and ZHAs with a J-operator —
that, more visually, are ZHAs “with slashings”.

• PH3 transports this to Topos Theory: if we regard a 2CG (P,A) as a
category, then Set(P,A) is a topos whose objects are easy to draw, and
the logic of Set(P,A) is exactly the ZHA associated to (P,A); also, a set of
question marks Q ⊆ P induces an operation on Set(P,A) that erases the
information on Q and reconstructs it in a natural way, and this erasing-
plus-reconstruction yields a sheafification functor — that is exactly the
one associated to the local operator j associated to the J-operator J .
This gives us a way to visualize (certain) toposes, sheaves, geometric
morphisms, and two factorizations of geometric morphisms.

The second way to explain the goals of PH123 is by taking Diagrammatic
Reasoning as the main theme. Let me start with an anecdote (90% true).
Many, many years ago, when I tried to learn Topos Theory for the first time,
mainly from [Joh77] and [Gol84], everything felt far too abstract: most of
the diagrams were omitted, and the motivating examples were mentioned very
briefly, if at all. The intended audience for those books surely knew how to
supply by themselves the missing diagrams, examples, calculations, and details
— but I didn’t. My slogan became: “I need a version for children of this!”.
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At first this expression, “for children”, was informal, and I used it as a
half-joke. Very gradually it started to acquire a precise sense: clearly, CT done
in a purely algebraic way is “for adults”, and diagrams, particular cases, and
finite examples are “for children”. Writing “for adults” only and keeping the
mentions to the “for children” part very brief is considered good style because
“adults” have the technical machinery for producing more or less automatically
the “for children” part when they need it, and people who are not yet “adults”
can become “adults” by struggling with the texts “for adults” long enough and
learning by themselves how to handle the new level of abstraction.

A clear frontier between “for adults” and “for children” appears when we
realize that we can draw a diagram for the general case (“for adults”) of a
categorical concept and the diagram for a particular case of it (“for children”)
side by side. The two diagrams will have roughly the same shape, and we
can transport knowledge between them in both ways: from the general to the
particular, and back. Look at Figure 1; let’s name its subdiagrams as A, B,
and C, like this: A B

C . Each one of A, B, C has an internal view above and an
external view below.

Diagram A shows, below, the external view of the function N
√
→ R, and

above that its internal view — in which one of the arrows, n 7→
√
n, shows

the action of
√

on a generic element, and the other ‘ 7→’ arrows, like 3 7→
√

3
and 4 7→ 2, show substitution instances of n 7→

√
n, maybe after some term

reductions.
Diagram B shows the external view of a (generic) adjunction L a R, and

above it its internal view. The nodes and arrows above B are objects and mor-
phisms in B, and similarly for the nodes and arrows above A. The ‘7→’ arrows
of the internal view are now of three kinds: actions of functors on objects, ac-
tions of functors on morphisms, and “transpositions” coming from the natural
isomorphism Hom(L−,−)↔ Hom(−, R−). Diagram C is essentially the same
as B, but for a particular adjunction: (×B) a (B→). Note how the diagrams
B and C have exactly the same shape — but our diagrams for internal views
are much bigger than the corresponding external views.

For a case in which the interplay between external and internal views is
examined in full detail, see [Och19a]; it shows how each node and arrow in
the diagrams can be can interpreted as a term in a type system, and this may
be a basis for analyzing precisely which kinds of knowledge, and which kinds
of intuitions — as in [Krö07], especially sec.1.3.2, and in [Cor04] — we are
transporting from the less abstract diagrams to the more abstract ones, and
vice-versa. Note that having a clearly-defined method for lifting information
— in the sense of [Och13] — from a case “for children” to a case “for adults”
would allow people to publish much more material “for children” than they do
now, without this being regarded as bad style. For a non-trivial example of
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Figure 1: Three cases of internal views and external views.
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lifting information from a particular case to a general case, see [Och19b].

This paper can be seen as part of bigger projects in at least the two ways
described above, but it was also written to be as readable and as self-contained
as possible. In 2016 and 2017 I had the opportunity to test some of the ideas
here on “real children”, in the sense of “people with little mathematical knowl-
edge and little mathetical maturity”. I gave a seminar course about Logic and
λ-calculus that had no prerequisites, and that was mostly based on exercises
that the students would try to solve together by discussing on the whiteboard;
it was mostly attended by Computer Science students who had just finished a
course on Discrete Mathematics, but there were also some Psychology and Art
students — that unfortunately left after the first weeks of each semester. All
these students, including the CompSci ones, had in common that definitions
only made sense to them after they had played with a few concrete examples;
at some parts of the course I would ask them to read some sections of this
paper, then work on some extra exercises that I had prepared, and then read
excerpts of books like [Dal08] or [Awo06]. Most sections of this paper had
been tested “on real children” in this way, and were rewritten several times
after their feedback and reactions. I owe them many thanks — I’m glad that
they had fun in the process – and I hope that I’ll be able in the future to
transform what I learned with them into precise techniques for writing “for
children”.

1 Positional notations

Definition: a ZSet is a finite, non-empty subset of N2 that touches both axes,
i.e., that has a point of the form (0, ) and a point of the form ( , 0). We will
often represent ZSets using a bullet notation, with or without the axes and
ticks. For example:

K =


(1,3),

(0,2), (2,2),
(1,1),
(1,0)

 = =

We will use the ZSet above a lot in examples, so let’s give it a short name:
K (“kite”).

The condition of touching both axes is what lets us represent ZSets unam-
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biguously using just the bullets:

  =(

  =)

We can use a positional notation to represent functions from a ZSet. For
example, if

f : K → N
(x, y) 7→ x

then

f =


((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

 =
1

0 2
1
1

We will sometimes use λ-notation to represent functions compactly. For
example:

λ(x, y):K.x =


((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

 =
1

0 2
1
1

λ(x, y):K.y =


((1,3),3),

((0,2),2), ((2,2),2),
((1,1),1),
((1,0),0)

 =
3

2 2
1
0

The “reading order” on the points of a ZSet S “lists” the points of S starting
from the top and going from left to right in each line. More precisely, if S has
n points then rS : S → {1, . . . , n} is a bijection, and for example:

rK =
1

2 3
4
5

Subsets of a ZSet are represented with a notation with ‘•’s and ‘·’, and
partial functions from a ZSet are represented with ‘·’s where they are not
defined. For example:

•
· •
•
·

1
· 3
4
·

The characteristic function of a subset S′ of a ZSet S is the function χS′ :

S → {0, 1} that returns 1 exactly on the points of S′; for example,
1

0 1
1
0

is the

characteristic function of
•
· •
•
·
⊂

•
• •
•
•

. We will sometimes denote subsets by
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their characteristic functions because this makes them easier to “pronounce”

by reading aloud their digits in the reading order — for example,
1

0 1
1
0

is “one-

zero-one-one-zero” (see sec.12).

2 ZDAGs

We will sometimes use the bullet notation for a ZSet S as a shorthand for one
of the two DAGs induced by S: one with its arrows going up, the other one
with them going down. For example: sometimes

•
• •
•
•

will stand for:

•

• •

•

•

↙ ↘

↘ ↙

↓

=

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

=


(1,3),

(0,2), (2,2),
(1,1),
(0,0)

 ,

{
((1,3),(0,2)),((1,3),(2,2)),
((0,2),(1,1)),((2,2),(1,1)),

((1,1),(0,0))

}
Let’s formalize this.
Consider a game in which black and white pawns are placed on points of

Z2, and they can move like this:

•
↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

Black pawns can move from (x, y) to (x+ k, y − 1) and white pawns from
(x, y) to (x + k, y + 1), where k ∈ {−1, 0, 1}. The mnemonic is that black
pawns are “solid”, and thus “heavy”, and they “sink”, so they move down;
white pawns are “hollow”, and thus “light”, and they “float”, so they move
up.

Let’s now restrict the board positions to a ZSet S. Black pawns can move
from (x, y) to (x+k, y−1) and white pawns from (x, y) to (x+k, y+1), where
k ∈ {−1, 0, 1}, but only when the starting and ending positions both belong to
S. The sets of possible black pawn moves and white pawn moves on S can be
defined formally as:

BPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y − 1 }
WPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y + 1 }
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...and now please forget everything else you expect from a game — like starting
position, capturing, objective, winning... the idea of a “game” was just a tool
to let us explain BPM(S) and WPM(S) quickly.

A ZDAG is a DAG of the form (S,BPM(S)) or (S,WPM(S)), where S is a
ZSet.

A ZPO is partial order of the form (S,BPM(S)∗) or (S,WPM(S)∗), where
S is a ZSet and the ‘∗’ denotes the transitive-reflexive closure of the relation.

Sometimes, when this is clear from the context, a bullet diagram like
•• •••

will stand for either the ZDAGs (
•• ••• ,BPM(

•• ••• )) or (
•• ••• ,WPM(

•• ••• )), or for the

ZPOs (
•• ••• ,BPM(

•• ••• )∗) or (
•• ••• ,WPM(

•• ••• )∗) (sec.4).

3 LR-coordinates

The lr-coordinates are useful for working on quarter-plane of Z2 that looks like
N2 turned 45◦ to the left. Let 〈l, r〉 := (−l + r, l + r); then (the bottom part
of) { 〈l, r〉 | l, r ∈ N } is:

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉

〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈2, 0〉 〈1, 1〉 〈0, 2〉

〈1, 0〉 〈0, 1〉

〈0, 0〉

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Sometimes we will write lr instead of 〈l, r〉. So:

40 31 22 13 04

30 21 12 03

20 11 02

10 01

00

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Let LR = { 〈l, r〉 | l, r ∈ N }.

4 ZHAs

A ZHA is a subset of LR “between a left and a right wall”, as we will see.
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A triple (h, L,R) is a “height-left-right-wall” when:
1) h ∈ N
2) L : {0, . . . , h} → Z and R : {0, . . . , h} → Z
3) L(h) = R(h) (the top points of the walls are the same)
4) L(0) = R(0) = 0 (the bottom points of the walls are the same, 0)
5) ∀y ∈ {0, . . . , h}. L(y) ≤ R(y) (“left” is left of “right”)
6) ∀y ∈ {1, . . . , h}. L(y)− L(y − 1) = ±1 (the left wall makes no jumps)
7) ∀y ∈ {1, . . . , h}. R(y)−R(y − 1) = ±1 (the right wall makes no jumps)

The ZHA generated by a height-left-right-wall (h, L,R) is the set of all
points of LR with valid height and between the left and the right walls. For-
mally:

ZHAG(h, L,R) = { (x, y) ∈ LR | y ≤ h, L(y) ≤ x ≤ R(y) }.

A ZHA is a set of the form ZHAG(h, L,R), where the triple (h, L,R) is a
height-left-right-wall.

Here is an example of a ZHA (with the white pawn moves on it):

(−4, 8)

(−3, 9)

(−3, 7)

(−2, 8)

(−2, 6)

(−3, 3)

(−2, 4)

(−1, 5)

(−2, 2)

(−1, 3)

(0, 4)

(−1, 1)

(0, 2)

(1, 3)

(0, 0)

(1, 1)

↗ ↖

↖ ↗

↖

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗ ↖

↖ ↗
L(0) = 0 R(0) = 0

L(1) = −1 R(1) = 1

L(2) = −2 R(2) = 0

L(3) = −3 R(3) = 1

L(4) = −2 R(4) = 0

L(5) = −1 R(5) = −1

L(6) = −2 R(6) = −2

L(7) = −3 R(7) = −3

L(8) = −4 R(8) = −2

L(9) = −3 R(9) = −3 h = 9L(9) = R(9)

L(0) = R(0) = 0

We will see later (in section 7) that ZHAs (with white pawn moves) are
Heyting Algebras.
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5 Conventions on diagrams without axes

We can use a bullet notation to denote ZHAs, but look at what happens when
we start with a ZHA, erase the axes, and then add the axes back using the
convention from sec.1:

  

The new, restored axes are in a different position — the bottom point of the
original ZHA at the left was (0, 0), but in the ZSet at the right the bottom
point is (2, 0).

The convention from sec.1 is not adequate for ZHAs.
Let’s modify it!
From this point on, the convention on where to draw the axes will be this

one: when it is clear from the context that a bullet diagram represents a ZHA,
then its (unique) bottom point has coordinate (0, 0), and we use that to draw
the axes; otherwise we apply the old convention, that chooses (0, 0) as the point
that makes the diagram fit in N2 and touch both axes.

The new convention with two cases also applies to functions from ZHAs,
and to partial functions and subsets. For example:

B =

•

•
•
•

•
•
•

•
•
•

•

•
•
•

•
•
•

•
•
• (a ZHA) λ(x, y):B.x =

-1

-2
-1
0

-1
0
1

0
1
2

λ〈l, r〉:B.l =

3

2
2
2

1
1
1

0
0
0 λ〈l, r〉:B.r =

2

0
1
2

0
1
2

0
1
2

We will often denote ZHAs by the identity function on them:

λ〈l, r〉:B.〈l, r〉 = λlr:B.lr =

32

20
21
22

10
11
12

00
01
02 B =

32

20
21
22

10
11
12

00
01
02

Note that we are using the compact notation from the end of section 3: ‘lr’
instead of ‘〈l, r〉’.

6 Propositional calculus

A PC-structure is a tuple

L = (Ω,≤,>,⊥,∧,∨,→,↔,¬),
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where:
Ω is the “set of truth values”,
≤ is a relation on Ω,
> and ⊥ are two elements of Ω,
∧, ∨, →, ↔ are functions from Ω× Ω to Ω,
¬ is a function from Ω to Ω.

Classical Logic “is” a PC-structure, with Ω = {0, 1}, > = 1, ⊥ = 0,

≤= {(0, 0), (0, 1), (1, 0)}, ∧ =
{

((0,0),0),((0,1),0),
((1,0),0),((1,1),1)

}
, etc.

PC-structures let us interpret expressions from Propositional Calculus (“PC-
expressions”), and let us define a notion of tautology. For example, in Classical
Logic,

• ¬¬P ↔ P is a tautology because it is valid (i.e., it yields >) for all values
of P in Ω,

• ¬(P ∧Q)→ (¬P ∨¬Q) is a tautology because it is valid for all values of
P and Q in Ω,

• but P ∨Q → P ∧Q is not a tautology, because when P = 0 and Q = 1
the result is not >:

P︸︷︷︸
0

∨ Q︸︷︷︸
1︸ ︷︷ ︸

1

→ P︸︷︷︸
0

∧ Q︸︷︷︸
1︸ ︷︷ ︸

0︸ ︷︷ ︸
0
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7 Propositional calculus in a ZHA

Let Ω be the set of points of a ZHA and ≤ the default partial order on it. The
default meanings for >,⊥,∧,∨,→,↔,¬ are these ones:

〈a, b〉 ≤ 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 ≥ 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 above 〈c, d〉 := a ≥ c ∧ b ≥ d
〈a, b〉 below 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 leftof 〈c, d〉 := a ≥ c ∧ b ≤ d
〈a, b〉 rightof 〈c, d〉 := a ≤ c ∧ b ≥ d

valid(〈a, b〉) := 〈a, b〉 ∈ Ω

ne(〈a, b〉) := if valid (〈a, b+ 1〉) then ne(〈a, b+ 1〉) else 〈a, b〉 end
nw(〈a, b〉) := if valid (〈a+ 1, b〉) then nw(〈a+ 1, b〉) else 〈a, b〉 end

〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),max(b, d)〉

〈a, b〉 → 〈c, d〉 := if 〈a, b〉 below 〈c, d〉 then >
elseif 〈a, b〉 leftof 〈c, d〉 then ne(〈c, d〉)
elseif 〈a, b〉 rightof 〈c, d〉 then nw(〈c, d〉)
elseif 〈a, b〉 above 〈c, d〉 then 〈c, d〉
end

> := sup(Ω)

⊥ := 〈0, 0〉
¬〈a, b〉 := 〈a, b〉 → ⊥

〈a, b〉 ↔ 〈c, d〉 := (〈a, b〉 → 〈c, d〉) ∧ (〈c, d〉 → 〈a, b〉)

Let Ω be the ZHA at the top left in the figure below. Then, with the default
meanings for the connectives neither ¬¬P → P nor ¬(P ∧ Q) → (¬P ∨ ¬Q)
are tautologies, as there are valuations that make them yield results different
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than > = 32:

32

20
21

22

10
11

12

00
01

02

>
·

· →
P ′′ · P ′

P ·
⊥

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

>
∨
· ·

Q′ · P ′

P Q
∧

¬( P︸︷︷︸
10

∧ Q︸︷︷︸
01︸ ︷︷ ︸

00︸ ︷︷ ︸
32

)→ (¬ P︸︷︷︸
10︸ ︷︷ ︸

02

∨¬ Q︸︷︷︸
01︸ ︷︷ ︸

20︸ ︷︷ ︸
22

)

︸ ︷︷ ︸
22

So: some classical tautologies are not tautologies in this ZHA.
The somewhat arbitrary-looking definition of ‘→’ will be explained at the

end of the next section.

8 Heyting Algebras

A Heyting Algebra is a PC-structure

H = (Ω,≤H ,>H ,⊥H ,∧H ,∨H ,→H ,↔H ,¬H),

in which:
1) (Ω,≤H) is a partial order
2) >H is the top element of the partial order
3) ⊥H is the bottom element of the partial order
4) P ↔H Q is the same as (P →H Q) ∧H (Q→H P )
5) ¬HP is the same as P →H ⊥H
6) ∀P,Q,R ∈ Ω. (P ≤H (Q ∧H R))↔ ((P ≤H Q) ∧ (P ≤H R))
7) ∀P,Q,R ∈ Ω. ((P ∨H Q) ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8) ∀P,Q,R ∈ Ω. (P ≤H (Q→H R))↔ ((P ∧H Q) ≤H R)
6’) ∀Q,R ∈ Ω. ∃!Y ∈ Ω. ∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))
7’) ∀P,Q ∈ Ω.∃!X ∈ Ω.∀R ∈ Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8’) ∀Q,R ∈ Ω. ∃!Y ∈ Ω. ∀P ∈ Ω. (P ≤H Y )↔ ((P ∧H R) ≤H R)

The conditions 6’, 7’, 8’ say that there are unique elements in Ω that
“behave as” Q ∧H R, P ∨H Q and Q→H R for given P , Q, R; the conditions
6,7,8 say that Q ∧H R, P ∨H Q and Q →H R are exactly the elements with
this behavior.
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The positional notation on ZHAs is very helpful for visualizing what the
conditions 6’,7’,8’,6,7,8 “mean”. More precisely: once we fix a ZHA Ω and
truth-values P,Q,R ∈ Ω we have a way to draw and to visualize the “behavior”
of each subexpression of the conditions 6, 7, 8 using the positional notations
of sec.1, and we can use that to obtain the only possible values for Q ∧H R,
P ∨H Q and Q→H R.

We will examine three particular cases: with Ω being the ZDAG on the left
below,

40
41

42
43

44

30
31

32
33

34

20
21

22
23

24

10
11

12
13

14

00
01

02
03

04

>
· ·

· · ·
· · · (→)

· Q · · ·
· · R ·
· (∧) ·
· ·
⊥

>
· ·

· · ·
· (∨) · ·

· P · · ·
· · Q ·
· · ·
· ·
⊥

a) if Q = 31 and R = 12 then Q ∧H R = 11,
b) if P = 31 and Q = 12 then P ∨H Q = 32,
c) if Q = 31 and R = 12 then Q→H R = 14.

Before we start, note that in 6, 7, 8, 6’, 7’, 8’ some subexpressions yield
truth values in Ω and other subexpressions yield standard truth values. For
example, in 6, with P = 20, we have:

( P︸︷︷︸
20

≤H ( Q︸︷︷︸
31

∧H R︸︷︷︸
12︸ ︷︷ ︸

11

)

︸ ︷︷ ︸
0

)↔ (( P︸︷︷︸
20

≤H Q︸︷︷︸
31︸ ︷︷ ︸

1

) ∧ ( P︸︷︷︸
20

≤H R︸︷︷︸
12︸ ︷︷ ︸

0︸ ︷︷ ︸
0

))

︸ ︷︷ ︸
1

Case (a). Let Q = 31 and R = 12. We want to see that Q ∧H R = 11, i.e.,
that

∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))

holds for Y = 11 and for no other Y ∈ Ω. We can visualize the behavior of
P ≤H Q for all ‘P ’s by drawing λP :Ω.(P ≤H Q) in the positional notation;
then we do the same for λP :Ω.(P ≤H R) and for λP :Ω.((P ≤H Q)∧(P ≤H R)).
Suppose that the full expression, ‘∀P :Ω. ’, is true; then the behavior of the
left side of the ‘↔’, λP :Ω.(P ≤H Y ), has to be a copy of the behavior of the
right side, and that lets us find the only adequate value for Y .
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The order in which we calculate and draw things is below, followed by the
results themselves:

(P ≤H Y︸︷︷︸
(7)︸ ︷︷ ︸

(6)

)↔ ((P ≤H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ∧ (P ≤H R︸︷︷︸
(2)︸ ︷︷ ︸

(4)

)

︸ ︷︷ ︸
(5)

)

(P ≤H Y︸︷︷︸
11︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)↔ ((P ≤H Q︸︷︷︸
31︸ ︷︷ ︸

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

) ∧ (P ≤H R︸︷︷︸
12︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
0
0

1
1
1
0
0

)

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)

Case (b). Let P = 31 and Q = 12. We want to see that P ∨H Q = 32, i.e.,
that

∀R:Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))

holds for X = 32 and for no other X ∈ Ω. We do essentially the same as
we did in (a), but now we calculate λR:Ω.(P ≤H R), λR:Ω.(Q ≤H R), and
λR:Ω.((P ≤H R) ∧ (Q ≤H R)). The order in which we calculate and draw
things is below, followed by the results themselves:

( X︸︷︷︸
(7)

≤H R

︸ ︷︷ ︸
(6)

)↔ (( P︸︷︷︸
(1)

≤H R

︸ ︷︷ ︸
(3)

) ∧ ( Q︸︷︷︸
(2)

≤H R

︸ ︷︷ ︸
(4)

)

︸ ︷︷ ︸
(5)

)



140 E. Ochs

( X︸︷︷︸
32

≤H R︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)↔ (( P︸︷︷︸
31

≤H R︸ ︷︷ ︸
0
1
1
1
1

0
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

) ∧ ( Q︸︷︷︸
12

≤H R

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

)

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)

Case (c). Let Q = 31 and R = 12. We want to see that Q →H R = 14,
i.e., that

∀P :Ω. (P ≤H Y )↔ ((P ∧H Q) ≤H R)

holds for Y = 14 and for no other Y ∈ Ω. Here we have to do something slightly
different. We start by visualizing λP :Ω.(P ∧H Q), which is a function from Ω
to Ω, not a function from Ω to {0, 1} like the ones we were using before. The
order in which we calculate and draw things is below, followed by the results:

(P ≤H Y︸︷︷︸
(6)︸ ︷︷ ︸

(5)

)↔ ((P ∧H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ≤H R︸︷︷︸
(2)

︸ ︷︷ ︸
(4)

))

(P ≤H Y︸︷︷︸
14︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)↔ (( P ∧H Q︸︷︷︸
31︸ ︷︷ ︸

30
31
31
31
31

30
31
31
31
31

20
21
21
21
21

10
11
11
11
11

00
01
01
01
01

) ≤H R︸︷︷︸
12

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

))
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9 The two implications are equivalent

In sec.7 we gave a definition of ‘→’ that is easy to calculate, and in sec.8 we
saw a way to find by brute force1 a value for Q→ R that obeys

(P ≤ (Q→ R))↔ (P ∧Q ≤ R)

for all P . In this section we will see a proof that these two operations — called

‘
C→’ and ‘

HA→’ from here on — always give the same results.

Theorem 9.1 We have (Q
C→ R) = (Q

HA→ R), for any ZHA H and Q,R ∈ H.

The proof will take the rest of this section, and our approach will be to
check that for any ZHA H and Q,R ∈ H this holds, for all P ∈ H:

(P ≤ (Q
C→ R))↔ (P ∧Q ≤ R).

In ‘
C→’ the order of the cases is very important. For example, if cd = 21 and

ef = 23 then both “cd below ef” and “cd leftof ef” are true, but “cd below ef”

takes precedence and so cd
C→ ef = >. We can fix this by creating variants

of below, leftof, righof and above, called below′, leftof ′, righof ′ and above′, that
make the four cases disjoint. Abbreviating below, leftof, righof and above as b,
l, r and a, we have:

cd b ef := c ≤ e ∧ d ≤ f cd b′ ef := c ≤ e ∧ d ≤ f
cd l ef := c ≤ e ∧ d ≥ f cd l′ ef := c ≤ e ∧ d > f

cd r ef := c ≥ e ∧ d ≤ f cd r′ ef := c > e ∧ d ≤ f
cd a ef := c > e ∧ d > f cd a′ ef := c > e ∧ d > f

visually the regions are these, for R fixed:

R

Q a′ R

Q b′ R

Q l′ R Q r′ R

Note that R belongs to the lower region — i.e., R b′ R.

1“When in doubt use brute force” — Ken Thompson
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Now we clearly have:

Q
C→ R =


if Q bR then >
elseif Q lR then ne(R)

elseif Q r R then nw(R)

elseif Q aR then R

end

 =


if Q b′ R then >
elseif Q l′ R then ne(R)

elseif Q r′ R then nw(R)

elseif Q a′ R then R

end


and P ≤ (Q

C→ R) can be expressed as a conjunction of the four cases:

((P ≤ Q C→ R)↔ (P ∧Q ≤ R))

↔


Q b′ R→ ((P ≤ Q C→ R)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ Q C→ R)↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ Q C→ R)↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ Q C→ R)↔ (P ∧Q ≤ R))



↔


Q b′ R→ ((P ≤ >)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ ne(R))↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ nw(R))↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ R)↔ (P ∧Q ≤ R))


Let’s introduce a notation: a “â” means “make this digit as big possible

without leaving the ZHA”. So,

in

53
54

42
43

44

31
32

33
34

20
21

22
23

24

10
11

12
13

00
01

02
03

we have

1̂2̂ = 54 = >,
12̂ = 13 = ne(12),

1̂2 = 42 = nw(12);

This lets us rewrite > as êf̂ , ne(ef) as ef̂ , and nw(ef) as êf .
Making P = ab, Q = cd, R = ef , we have:
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((ab ≤ cd C→ ef)↔ (ab ∧ cd ≤ ef))

↔


cd b′ ef → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
cd l′ ef → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
cd r′ ef → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
cd a′ ef → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ cd)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ed)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ cf)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ >) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ a ≤ e) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ b ≤ f) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (a ≤ e ∧ b ≤ f))


In the last conjunction the four cases are trivial to check.

10 Logic in a Heyting Algebra

In sec.8 we saw a set of conditions — called 1 to 8’ — that characterize the
“Heyting-Algebra-ness” of a PC-structure. It is easy to see that Heyting-
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Algebra-ness, or “HA-ness”, is equivalent to this set of conditions:

1) ∀P. (P ≤ P ) (id)

∀P,Q,R. (P ≤ R) ← (P ≤ Q) ∧ (Q ≤ R) (comp)

2) ∀P. (P ≤ >) (>1)

3) ∀Q. (⊥ ≤ Q) (⊥1)

6) ∀P,Q,R. (P ≤ Q ∧R) → (P ≤ Q) (∧1)
∀P,Q,R. (P ≤ Q ∧R) → (P ≤ R) (∧2)
∀P,Q,R. (P ≤ Q ∧R) ← (P ≤ Q) ∧ (P ≤ R) (∧3)

7) ∀P,Q,R. (P ∨Q ≤ R) → (P ≤ R) (∨1)
∀P,Q,R. (P ∨Q ≤ R) → (Q ≤ R) (∨2)
∀P,Q,R. (P ∨Q ≤ R) ← (P ≤ R) ∧ (Q ≤ R) (∨3)

8) ∀P,Q,R. (P ≤ Q→R) → (P ∧Q ≤ R) (→1)

∀P,Q,R. (P ≤ Q→R) ← (P ∧Q ≤ R) (→2)

We omitted the conditions 4 and 5, that defined ‘↔’ and ‘¬’ in terms of the
other operators. The last column of the table gives a name to each of these
new conditions.

These new conditions let us put (some) proofs about HAs in tree form, as
we shall see soon.

Let us introduce two new notations. The first one,

(expr)
[
v1:=repl1
v2:=repl2

]
indicates simultaneous substitution of all (free) occurrences of the variables v1
and v2 in expr by the replacements repl1 and repl2. For example,

((x+ y) · z)
[
x:=a+y
y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x).

The second is a way to write ‘→’s as horizontal bars. In

A B C

D
α

E F

G
β

H

I
γ

J
δ

K
ε

L M

N
ζ

O

P
η

the trees mean:

• if A, B, C are true then D is true (by α),
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• if E, F , are true then G is true (by β),

• if H is true then I is true (by γ),

• J is true (by δ, with no hypotheses),

• K is true (by ε); if L and M then N (by ζ); if K, N , O, then P (by η);
combining all this we get a way to prove that if L, M , O, then P ,

where α, β, γ, δ, ε, ζ, η are usually names of rules.

The implications in the table in the beginning of this section can be rewrit-
ten as “tree rules” as:

P ≤ P id
P ≤ Q Q ≤ R

P ≤ R
comp

P ≤ > >1 ⊥ ≤ Q ⊥1

P ≤ Q ∧R
P ≤ Q

∧1
P ≤ Q ∧R
P ≤ R

∧2
P ≤ Q P ≤ R
P ≤ Q ∧R

∧3

P ∨Q ≤ R
P ≤ R

∨1
P ∨Q ≤ R
Q ≤ R

∨2
P ≤ R Q ≤ R
P ∨Q ≤ R

∨3

P ≤ Q→R
P ∧Q ≤ R

→1
P ∧Q ≤ R
P ≤ Q→R

→2

Note that the ‘∀P,Q,R ∈ Ω’s are left implicit in the tree rules, which means
that every substitution instance of the tree rules hold; sometimes — but rarely
— we will indicate the substitution explicitly, like this,(

P ∧Q ≤ R
P ≤ Q→R

→2

)[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

(→2)
[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

[
Q:=P→⊥
R:=⊥

]
Usually we will only say ‘→2’ instead of ‘→2

[
Q:=P→⊥
R:=⊥

]
’ at the right of a bar,

and the task of discovering which substitution has been used is left to the
reader.
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The tree rules can be composed in a nice visual way. For example, this tree
— let’s call it (∧∧),

P ∧Q ≤ P ∧Q id

P ∧Q ≤ P
∧1

P ≤ R
P ∧Q ≤ R

comp

P ∧Q ≤ P ∧Q id

P ∧Q ≤ Q
∧2

Q ≤ S
P ∧Q ≤ S

comp

P ∧Q ≤ R ∧ S
∧3

“is” a proof for:

∀P,Q,R, S ∈ Ω. (P ≤ R) ∧ (Q ≤ S)→ ((P ∧Q) ≤ (R ∧ S)).

We can perform substitutions on trees, and the notation will be the same
as for tree rules: for example, (∧∧) [ S:=P∧Q ].

10.1 Derived rules

Let be HAT the set of “Heyting Algebra rules in tree form” from the last
section:

HAT = {(id), . . . , (→2)}.

Let’s see a way to treat HAT as a deductive system.
If S is a set of tree rules, we will write:

• Trees(S) for the set of all trees whose bars are all substituion instances
of rules in S,

• Trees(S, {H1, . . . ,Hn}) for the set of all trees in Trees(S) whose hypothe-
ses are contained in the set {H1, . . . ,Hn}, and

• Trees(S, {H1, . . . ,Hn}, C) for the set of trees in Trees(S, {H1, . . . ,Hn})
having C as their conclusion.

When the set S is clear from the context, we write

H1 . . . Hn

C

to mean: we know a tree in Trees(S, {H1, . . . ,Hn}, C), and this is an abbrevia-
tion for it. I like to think of the double bar as the bellows of a closed accordion:
when the accordion is closed we can still see the keyboards at both sides, but
not the drawings painted on the folded part of the pleated cloth.

The notation that defines a derived rule is “newrule := expansion”, where
expansion is a tree in Trees(S, {H1, . . . ,Hn}, C) and newrule is a bar with
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hypotheses H1, . . . ,Hn and conclusion C, written with a single bar with a
(new) rule name, instead of with a double bar. For example, this is a version
of Modus Ponens for Heyting Algebras:

P ≤ Q P ≤ Q→R
P ≤ R MP

:=

P ≤ Q→R P ≤ Q
P ≤ (Q→R)∧Q

∧3
Q→R ≤ Q→R id

(Q→R)∧Q ≤ R
→1

P ≤ R
comp

After the definition of a derived rule — say, “D1 := E1” — the set of
allowed tree rules that is implicit from the context is increased, with D1 being
added to it; when we define another derived rule, D2 := E2, its expansion E2

can have bars that are substitution instances of D1. After adding more derived
rules, D3 := E3, . . ., Dn := En, we can use all the new rules D1, . . . , Dn in
our trees — and we have a way to remove all the derived rules from our trees!
Take a tree T ∈ Trees(S ∪ {D1, . . . , Dn}); replace each substitution instance
of Dn in it by its expansion, then replace every substitution instance of Dn−1
in the new tree by its expansion, and so on; after replacing all substitution
instances of D1 we get a tree in Trees(S), with the same hypotheses and the
same conclusion as the original T .

We want to add these other derived rules:

Q ∧R ≤ Q ∧E1
:=

Q ∧R ≤ Q ∧R id

Q ∧R ≤ Q
∧1

Q ∧R ≤ R ∧E2
:=

Q ∧R ≤ Q ∧R id

Q ∧R ≤ R
∧2

P ≤ P ∨Q ∨I1 :=

P ∨Q ≤ P ∨Q id

P ≤ P ∨Q
∨1

Q ≤ P ∨Q ∨I2 :=

P ∨Q ≤ P ∨Q id

Q ≤ P ∨Q
∨2

P ∧R ≤ S Q ∧R ≤ S
(P ∨Q) ∧R ≤ R ∨E

:=

P ∧R ≤ S
P ≤ R→ S

→2
Q ∧R ≤ S
Q ≤ R→ S

→2

P ∨Q ≤ R→ S
∨3

(P ∨Q) ∧R ≤ R
→1
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10.2 Natural deduction

The system HAT with all the derived rules of the last section added to it will
be called HAND:

HAND = {(id), . . . , (→2), (MP), . . . , (∨E))}

Trees in Natural Deduction for IPL can be translated into HAND by a
method that we will sketch below. Note that this section is not self-contained
— it should be regarded as an introduction to [NP01]. Note that all our trees
can be intepreted as proofs about Heyting Algebras.

This is an example of a tree in Natural Deduction:

[P ]1 P→Q
Q

(→ E)
[P ]1 P→R

R
(→ E)

Q∧R (∧I)

P→(Q∧R)
(→ I); 1

The “;1” in its last bar means: below this point the hypotheses marked with
‘[ · ]1’ are “discharged” from the list of hypotheses. Each subtree of a ND tree
with undischarged hypotheses H1, . . . ,Hn and conclusion C will be interpreted
as some tree in HAND with no hypotheses and conclusion H1 ∧ . . . ∧Hn ≤ C
— there are usually several possible choices. So:

P P→Q
Q =⇒ P ∧ (P→Q) ≤ Q MP

P P→R
R =⇒ P ∧ (P→R) ≤ R MP

Q R

Q∧R =⇒ Q∧R ≤ Q∧R id

P P→Q
Q

P P→R
R

Q∧R =⇒ ((P→R) ∧ (P→Q)) ∧ P ≤ Q∧R

[P ]1 P→Q
Q

[P ]1 P→R
R

Q∧R
P→(Q∧R)

(→ I); 1
=⇒

((P→R) ∧ (P→Q)) ∧ P ≤ Q∧R
(P→R) ∧ (P→Q) ≤ P→Q∧R

→2
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The ND rules that are difficult to understand and difficult to translate are
the ones that involve discharges: ‘(→ I)’, that appears above, and ‘(∨E)’:

P ∨Q

[P ]1 R
.... T1
S

[Q]1 R
.... T2
S

S
(∨E)

=⇒
P ∧R ≤ S T1

Q ∧R ≤ S T2

(P ∨Q) ∧R ≤ S ∨E

Note that the derived rule ∨E is used to combine the translations of the sub-
trees T1 and T2 into a translation of the whole ND tree.

My suggestion for the readers that are seeing this for the first time is: start
by translating the ND tree below

(P ∨Q) ∧R
P ∨Q (∧E1)

[P ]1
(P ∨Q) ∧R

R
(∧E2)

P ∧R (∧I)

(P ∧R) ∨ (Q ∧R)
(∨I1)

[Q]1
(P ∨Q) ∧R

R
(∧E2)

Q ∧R (∧I)

(P ∧R) ∨ (Q ∧R)
(∨I2)

(P ∧R) ∨ (Q ∧R)
(∨E); 1

to a tree in HAND, and then to a tree in HAT; then read the relevant parts of
[NP01] to see how they would do that translation.

11 Topologies

The best way to connect ZHAs to several standard concepts is by seeing that
ZHAs are topologies on certain finite sets — actually on 2-column acyclical
graphs (sec.14). This will be done here and in the next few sections.

A topology on a set X is a subset U of P(X) that contains the “everything”
and the “nothing” and is closed by binary unions and intersections and by
arbitrary unions. Formally:

1) U contains X and ∅,
2) if P,Q ∈ U then U contains P ∪Q and P ∩Q,
3) if V ⊂ U then U contains

⋃
V.

A topological space is a pair (X,U) where X is a set and U is a topology
on X.

When (X,U) is a topological space and U ∈ U we say that U is open in
(X,U).

For example, let X be the ZSet
• ••• •, and let’s use the characteristic function

notation from sec.1 to denote its subsets — we write X =
1 1
1

1 1
and ∅ =

0 0
0

0 0

instead of X =
• ••• • and ∅ =

· ··· · .
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If U =
{
1 0
0

0 0
,
0 1
0

0 0
,
0 0
1

0 0
,
0 0
0

1 0
,
0 0
0

0 1

}
then U ⊂ P(X) but U fails all the condi-

tions in 1, 2, 3 above:
1) X =

1 1
1

1 1
6∈ U and ∅ =

0 0
0

0 0
6∈ U

2) Let P =
1 0
0

0 0
∈ U and Q =

0 1
0

0 0
∈ U . Then P ∩ Q =

0 0
0

0 0
6∈ U and

P ∪Q =
1 1
0

0 0
6∈ U .

3) Let V =
{
0 1
0

0 0
,
0 0
1

0 0
,
0 0
0

1 0

}
⊂ U . Then

⋃
V =

0 1
0

0 0
∪ 0 0

1
0 0
∪ 0 0

0
1 0

=
0 1
1

1 0
6∈ U .

Now let K =
•
• •
•
•

and U =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
. In this case

(K,U) is a topological space.

Some sets have “default” topologies on them, denoted with ‘O’. For exam-
ple, R is often used to mean the topological space (R,O(R)), where:

O(R) = {U ⊂ R | U is a union of open intervals }.

We say that a subset U ⊂ R is “open in R” (“in the default sense”; note that
now we are saying just “open in R”, not “open in (R,O(R))”) when U is a
union of open intervals, i.e., when U ∈ O(R); but note that P(R) and {∅,R}
are also topologies on R, and:

{2, 3, 4} ∈ P(R), so {2, 3, 4} is open in (R,P(R)),

{2, 3, 4} 6∈ O(R), so {2, 3, 4} is not open in (R,O(R)),

{2, 3, 4} 6∈ {∅,R}, so {2, 3, 4} is not open in (R, {∅,R});

when we say just “U is open in X”, this means that:
1) O(X) is clear from the context, and
2) U ∈ O(X).

12 The default topology on a ZSet

Let’s define a default topology O(D) for each ZSet D.

For each ZSet D we define O(D) as:

O(D) := {U ⊂ D | ∀((x, y), (x′, y′)) ∈ BPM(D).

(x, y) ∈ U → (x′, y′) ∈ U }

whose visual meaning is this. Turn D into a ZDAG by adding arrows for
the black pawns moves (sec.2), and regard each subset U ⊂ D as a board
configuration in which the black pieces may move down to empty positions
through the arrows. A subset U is “stable” when no moves are possible because
all points of U “ahead” of a black piece are already occupied by black pieces;
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a subset U is “non-stable” when there is at least one arrow ((x, y), (x′, y′)) ∈
BPM(D) in which (x, y) had a black piece and (x′, y′) is an empty position.

In our two notations for subsets (sec.1) a subset U ⊂ D is unstable when it
has an arrow like ‘• → ·’ or ‘1→ 0’; remember that black pawn moves arrows
go down. A subset U ⊂ D is stable when none of its ‘•’s or ‘1’s can move down
to empty positions.

“Open” is the same as “stable”. O(D) is the set of stable subsets of D.

Some examples:
0

0 1
0
0

is not open because it has a 1 above a 0,

O(
•
• •
•
•

) =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

O(
•
• •
• •) =

{
0

0 0
0 0

,
0

0 0
0 1

,
0

0 0
1 0

,
0

0 0
1 1

,
0

0 1
0 1

,
0

0 1
1 1

,
0

1 0
1 0

,
0

1 0
1 1

,
0

1 1
1 1

,
1

1 1
1 1

}
.

The definition of O(D) above can be generalized to any directed graph. If
(A,R) is a directed graph, then (A,OR(A)) is a topological space if we define:

OR(A) := {U ⊆ A | ∀(a, b) ∈ R. (a ∈ U → b ∈ U) }

The two definitions are related as this: O(D) = OBPM(D)(D).
Note that we can see the arrows in BPM(D) or in R as obligations that

open sets must obey; each arrow a→ b says that every open set that contains
a is forced to contain b too.

13 Topologies as partial orders

For any topological space (X,O(X)) we can regard O(X) as a partial order,
ordered by inclusion, with ∅ as its minimal element and X as its maximal
element; we denote that partial order by (O(X),⊆).

Take any ZSet D. The partial order (O(D),⊆) will sometimes be a ZHA
when we draw it with ∅ at the bottom, D at the top, and inclusions pointing

up, as can be seen in the three figures below; when D =
•
• •
• • or D = • •• •• • the

result is a ZHA, but when D = • • •• • it is not.
Let’s write “V ⊂1 U” for “V ⊆ U and V and U differ in exactly one point”.

When D is a ZSet the relation ⊆ on O(D) is the transitive-reflexive closure of
⊂1, and (O(D),⊂1) is easier to draw than (O(D),⊆).
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(H,BPM(H)) =

•

• •

• •

↙ ↘

↓ ↓
(O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(G,BPM(G)) =

• •

• •

• •

↙ ↘ ↙

↘ ↙ ↘
(O(G),⊂1) =

1 11 11 1

1 01 11 1
0 11 11 1

0 01 11 1
0 10 11 1

0 01 01 1
0 00 11 1

0 01 01 0
0 00 01 1

0 00 01 0
0 00 00 1

0 00 00 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(W,BPM(W )) =
• • •

• •
↘ ↙ ↘ ↙ (O(W ),⊂1) =

1 1 11 1

1 1 01 1 1 0 11 1 0 1 11 1

1 0 01 1 0 1 01 1 0 0 11 1

1 0 01 0 0 0 01 1 0 0 10 1

0 0 01 0 0 0 00 1

0 0 00 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗
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We can formalize a “way to draw O(D) as a ZHA” (or “...as a ZDAG”) as
a bijective function f from a ZHA (or from a ZSet) S to O(D) that creates
a perfect correspondence between the white moves in S and the “V ⊂1 U -
arrows”; more precisely, an f such that this holds: if a, b ∈ S then (a, b) ∈
WPM(S) iff f(a) ⊂1 f(b).

Note that the number of elements in an open set corresponds to the height
where it is drawn; if f : S → O(D) is a way to draw O(D) as a ZHA or a
ZDAG then f takes points of the form ( , y) to open sets with y elements, and
if f : S → O(D) is a way to draw O(D) as a ZHA (not a ZDAG!) then we also
have that f((0, 0)) = ∅ ∈ O(D).

The diagram for (O(H),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(G),⊂1) above is a way to draw O(G) as a ZHA.
The diagram for (O(W ),⊂1) above is not a way to draw O(W ) as a ZSet.

Look at 0 1 01 1 and 1 0 11 1 in the middle of the cube formed by all open sets of the
form a b c1 1 . We don’t have 0 1 01 1 ⊂1

1 0 11 1 , but we do have a white pawn move
(not draw in the diagram!) from f−1(0 1 01 1 ) to f−1(1 0 11 1 ). We say that a ZSet
is thin when it doesn’t have three independent points.

Every time that a ZSet D has three independent points, as in W , we will
have a situation like in (O(W ),⊂1); for example, if B = • •• • •• • then the open
sets of B of the form 0 0a b c1 1 form a cube.

14 2-Column Graphs

Note: in this section we will manipulate objects with names like 1 , 2 , 3 , . . . ,
1, 2, 3, . . .; here are two good ways to formalize them:

...
...

4 = (0, 4) 4 = (1, 4)

3 = (0, 3) 3 = (1, 3)

2 = (0, 2) 2 = (1, 2)

1 = (0, 1) 1 = (1, 1)

or

...
...

4 = "4_" 4 = "_4"

3 = "3_" 3 = "_3"

2 = "2_" 2 = "_2"

1 = "1_" 1 = "_1"

,

where "1_", "_2", "", "Hello!", etc are strings.

We define:
LC(l) := {1 , 2 , . . . , l }
RC(r) := { 1, 2, . . . , r},

which generate a “left column” of height l and a “right column” of height r.
A description for a 2-column graph (a “D2CG”) is a 4-tuple (l, r, R, L),

where l, r ∈ N, R ⊂ LC(l)×RC(r), L ⊂ RC(r)×LC(l); l is the height of the left
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column, r is the height of the right column, and R and L are set of intercolumn
arrows (going right and left respectively).

The operation 2CG (in a sans-serif font) generates a directed graph from a
D2CG:

2CG(l, r, R, L) :=

(
LC(l) ∪ RC(r),

{
{l →(l−1) , ..., 2 →1 }∪
{ r→ (r−1), ..., 2→ 1}∪

R∪L

})
For example,

2CG(3, 4,
{

3 → 4,
2 → 3

}
,
{

2 ← 2,
1 ← 2

}
) :=

({
3 , 2 , 1 ,

4, 3, 2, 1

}
,

{
3 →2 , 2 →1 ,

4→ 3, 3→ 2, 2→ 1,
3 → 4, 2 → 3,
2 ← 2, 1 ← 2

})
which is: 

1

2

3

1

2

3

4


we will usually draw that more compactly, by omitting the intracolumn (i.e.,
vertical) arrows: (

1
2
3

1
2
3
4
)

or

(
•
•
•

•
•
•
•)

.

A 2-column graph (a “2CG”) is a directed graph that is of the form
2CG(l, r, R, L). We will often say (P,A) = 2CG(l, r, R, L), where the P stand
for “points” and A for “arrows”.

A 2-column acyclical graph (a “2CAG”) is a 2CG that doesn’t have cycles.
If L has an arrow that is the opposite of an arrow in R, this generates a cycle
of length 2; if R has an arrow l → r′ and L has an arrow l′ ← r, where l ≤ l′

and r ≤ r′, this generates a cycle that can have a more complex shape — a
triangle or a bowtie. For example,

1

2

3

4

1

2

3


and


1

2

3

1

2

3

4

.
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15 Topologies on 2CGs

In this section we will see that ZHAs are topologies on 2CAGs.

Let (P,A) = 2CG(l, r, R, L) be a 2-column graph.
What happens if we look at the open sets of (P,A), i.e., at OA(P )? Two things:

1) every open set U ∈ OA(P ) is of the form LC(a) ∪ RC(b),
2) arrows in R and L forbids some ‘LC(a) ∪ RC(b)’s from being open sets.

In order to understand that we need to introduce some notations for “piles”.

The function
pile(〈a, b〉) := LC(a) ∪ RC(b)

converts an element 〈a, b〉 ∈ LR into a pile of elements in the left column of
height a and a pile of elements in the right column of height b. We will write
subsets of the points of a 2CG using a positional notation with arrows. So, for
example, if (P,A) = 2CG(3, 4, {2 → 3}, {2 ← 2}) then

(P,A) =

(
1
2
3

1
2
3
4
)

and pile(21) =

(
1
1
0

1
0
0
0
)

(as a subset of P ).

Note that pile(21) is not open in (P,OA(P )), as it has an arrow ‘1→ 0’. In
fact, the presence of the arrow {2 → 3} in A means that all piles of the form(

1
1
?

?
?
0
0
)

are not open, the presence of the arrow {2 ← 2} means that the piles of the
form (

?
0
0

1
1
?
?
)

are not open sets.
The effect of these prohibitions can be expressed nicely with implications.

If
(P,A) = 2CG(l, r,

{
c → d,
e → f

}
,
{
g ← h,
i ← j

}
)

then

OA(P ) = { pile(ab) | a ∈ {0, . . . , l}, b ∈ {0, . . . , r},

(
a≥c→ b≥d ∧
a≥e→ b≥f ∧
a≥g← b≥h ∧
a≥i← b≥j

)
}
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Let’s use a shorter notation for comparing 2CGs and their topologies:

O


1

2

3

4

1

2

3

4

5


=

42
43

44
45

32
33

34
35

20
21

22
23

24
25

10
11

12
13

14

00
01

02
03

the arrows in R and L and the values of l and r are easy to read from the 2CG
at the left, and we omit the ‘pile’s at the right.

In a situation like the above we say that the 2CG in the ‘O(. . .)’ generates
the ZHA at the right. There is an easy way to draw the ZHA generated by
a 2CG, and a simple way to find the 2CG that generates a given ZHA. To
describe them we need two new concepts.

If (A,R) is a directed graph and S ⊂ A then ↓S is the smallest open set
in OR(A) that contains S. If (A,R) is a ZDAG with black pawns moves as its
arrows, think that the ‘1’s in S are painted with a black paint that is very wet,
and that that paint flows into the ‘0’s below; the result of ↓S is what we get
when all the ‘0’s below ‘1’s get painted black. For example: ↓ 0 10 00 0 = 0 10 11 1. When
(P,A) is a 2CG and S ⊆ P , we have to think that the paint flows along the
arrows, even if some of the intercolumn arrows point upward. For example:

↓

(
1
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

and if S consists of a single point, S = {s}, then we may write ↓s instead of
↓{s} = ↓S. In the 2CG above, we have (omitting the ‘pile’s):

↓ 2 = ↓{ 2} = ↓

(
0
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

= 23, and

↓ 4=24,
↓3 =33, ↓ 3=23,
↓2 =23, ↓ 2=23,
↓1 =10, ↓ 1=01,

The second concept is this: the “generators” of a ZDAG D with white
pawns moves as its arrows — or of a ZHA D — are the points of D that have
exactly one white pawn move pointing to them (not going out of them).

If (P,A) is a 2CAG, then OA(P ) is a ZHA, and ‘↓’ is a bijection from P to
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the generators of OA(P ); for example:

O


1

2

3

4

1

2

3

4

5


=

42
43

44
45

32
33

34
35

20
21

22
23

24
25

10
11

12
13

14

00
01

02
03

4
·
·
·

3
·
·
·

2
·
·
·
·

5

1
·
·
·

4

·
1

2
3

but if (P,A) is a 2CG with cycles, then OA(P ) is not a ZHA because each
cycle generates a “gap” that disconnects the points of OA(P ). We just saw
an example of a 2CG with a cycle in which ↓2 = 23 = ↓ 3 = ↓ 2; look at its
topology:

O


1

2

3

1

2

3

4


=

34
33 24

23

11
10 01

00

16 Topologies as Heyting Algebras

The open-set semantics for Intuitionistic Propositional Logic is based on this
idea: choose any topological space (X,O(X)); the opens sets of O(X) will play
the role of truth-values, and we define the components of a Heyting Algebra
(sec.8) as this:

Ω := O(X)

P ≤ Q := P ⊆ Q
> := {x ∈ X | > } = X

⊥ := {x ∈ X | ⊥ } = ∅
P ∧Q := {x ∈ X | x ∈ P ∧ x ∈ Q } = P ∩Q
P ∨Q := {x ∈ X | x ∈ P ∨ x ∈ Q } = P ∪Q

P
M→ Q := {x ∈ X | x ∈ P → x ∈ Q }

= {x ∈ X | x 6∈ P ∨ x ∈ Q } = (X\P ) ∪Q
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However, this ‘
M→’ may return a non-open result even when given open inputs,

0
1 0
1 0

M→ 0
0 0
1 1

=
1

0 1
1 1

so our definition is broken; we can fix it by taking the interior:

P → Q := int(P
M→ Q) = int((X\P ) ∪Q)

Theorem 16.1 For any topological space (X,O(X)) the structure (Ω,≤,>,⊥,∧,∨,→
) defined as above is a Heyting Algebra. In particular, this holds for any
P,Q,R ∈ Ω: P ≤ (Q→ R) iff (P ∧Q) ≤ R.

Proof. Standard; see for example [Awo06] (section 6.3). �

Note that Theorem 16.1 gives us another way to calculate the connectives
in 2CGs. In sec.7 we saw how to calculate ¬¬P → P in a certain ZHA when
P = 10; compare it with the “topological” way, in which the truth-values are

subsets of
•
• •
• •:

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

(¬¬ P︸︷︷︸
0

0 0
1 0︸ ︷︷ ︸
0

0 1
0 1︸ ︷︷ ︸
0

1 0
1 0

)→ P︸︷︷︸
0

0 0
1 0

︸ ︷︷ ︸
0

0 1
1 1

17 Converting between ZHAs and 2CAGs

Let’s now see how to start from a 2CAG and produce its topology (a ZHA)
quickly, and how to find quickly the 2CAG that generates a given ZHA.

From 2CAGs to ZHAs. Let (P,A) = 2CG(l, r, R, L) be a 2CAG, and call
the ZHA generated by it H. Then the top point of H is lr, and its bottom point
is 00. Let C := {00, ↓1 , ↓2 , . . . , ↓l , lr}, i.e., the left generators (see the end
of sec.15) plus ⊥ and >; then C has some of the points of the left wall (sec.4)
of H, but usually not all. To “complete” C, apply this operation repeatedly:
if ab ∈ C and ab 6= lr, then test if either (a+ 1)b or a(b+ 1) are in C; if none
of them are, add a(b + 1), which is northeast of ab. When there is nothing
else to add, then C is the whole of the left wall of H. For the right wall, start
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with D := {00, ↓ 1, ↓ 2, . . . , ↓ r, lr}, and for each ab ∈ C with ab 6= lr, test if
either (a + 1)b or a(b + 1) are in D; if none of them are, add (a + 1)b, which
is northwest of ab. When there is nothing else to add, then D is the whole of
the right wall of H.

In the acyclic example of the last section this yields:

C = {00, ↓1 , ↓2 , ↓3 , ↓4 , lr}
= {00, 10, 20, 32, 42, 45}
 {00, 10, 20, 21, 22, 32, 42, 43, 44, 45},

D = {00, ↓ 1, ↓ 2, ↓ 3, ↓ 4, ↓ 5, lr}
= {00, 01, 02, 03, 14, 25, 45}
 {00, 01, 02, 03, 13, 14, 24, 25, 35, 45}.

and the ZHA is everything between the “left wall” C and the “right wall” D.

From ZHAs to 2CAGs. Let H be a ZHA and let lr be its top point. Form
the sequence of its left wall generators (the generators of H in which the arrow
pointing to them points northwest) and the sequence of its right wall generators
(the generators of H in which the arrow pointing to them points northeast).
Look at where there are “gaps” in these sequences; each gap in the left wall
generators becomes an intercolumn arrow going right, and each gap in the right
wall generators becomes an intercolun arrow going left. In the acyclic example
of the last section, this yields:

5 = 25

(gap becomes 2 ← 5)

4 = 42 4 = 14

(no gap) (gap becomes 1 ← 4)

3 = 32 3 = 03

(gap becomes 3 → 2) (no gap)

2 = 20 2 = 02

(no gap) (no gap)

1 = 10 1 = 01

We know l and r from the top point of the ZHA, and from the gaps we get R
and L; the 2CAG that generates this ZHA is:

(4, 5,
{

3 → 2
}
,

{
2 ← 5,

1 ← 4

}
).
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Theorem 17.1 The two operations above are inverse to one another in the
following sense. If we start with a ZHA H, produce its 2CAG, and produce a
ZHA H ′ from that, we get the same ZHA: H ′ = H. In the other direction, if
we start with a 2CAG (P,A) = 2CG(l, r, R, L), produce its ZHA, H, and then
obtain a 2CAG (P ′, A′) = 2CG(l′, r′, R′, L′) from H, we get back the original
2CAG if and only if it didn’t have any superfluous arrows; if the original 2CAG
had superflous arrows then then new 2CAG will have l′ = l, r′ = r, and R′ and
L′ will be R and L minus these “superfluous arrows”, that are the ones that
can be deleted without changing which 2-piles are forbidden. For example:

1

2

3

4

1

2

3

4

 

44

32
33

34

22
23

24

10
11

12
13

14

00
01

02
03

04  


1

2

3

4

1

2

3

4


In this case we have R =

{
4 → 4,
4 → 3,
3 → 2,
2 → 2

}
and R′ =

{
4 → 4,
2 → 2

}
.

18 ZHA Logic is between IPL and CPL

In standard terminology, this is: ZHA Logic is a superintuitionistic logic
([CZ97], p.109) of “bounded width 2”, i.e., where the axiom BW2 of [CZ97],
p.112, holds. But let’s see this in elementary terms.

Let S be this sentence:

SP := P → (Q ∨R)

SQ := Q→ (R ∨ P )

SR := R→ (P ∨Q)

S := SP ∨ SQ ∨ SR

S can’t be an intuitionistic theorem because in this Heyting Algebra, with
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these values for P , Q, R,

(W,A) =
1

2 3 4
↙ ↓ ↘ (OA(W ),⊂1) =

1
111

0
111

0
110

0
101

0
011

0
100

0
010

0
001

0
000

↑

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↖ ↑ ↗

P = 0
100

Q = 0
010

R = 0
001

we have S = 0
111 6= > = 1

111.
One way to define a valuation for a sentence S with variables Vars(S) — in

our example we have Vars(S) = {P,Q,R}) — is as a pair made of a Heyting
Algebra H and a function v : Vars(S) → H. A looser definition is that a
valuation for S is a pair made of 1) something that generates a Heyting Algebra
in a known, canonical way, and 2) a function from Vars(S) to the elements of
that HA. So:

A classical valuation for S is a valuation of the form ({0, 1}, v).
A ZHA-valuation for S is a valuation of the form (H, v), where H is a ZHA.
A finite DAG-valuation for S is a valuation of the form ((W,A), v), where

W is a finite set and A ⊆W ×W is a set of arrows on W ; the Heyting Algebra
on (W,OA(W )) is built as in sec.16.

A 2CG-valuation for S is a finite DAG-valuation for S of the form ((P,A), v),
where (P,A) is a 2-column graph; each 2CG-valuation is naturally equivalent
to a ZHA-valuation, and vice-versa.

A classical countermodel for S is classical valuation for S in which the
value of S is not >; a ZHA-countermodel for S is a ZHA-valuation for S in
which the value of S is not >; an intuitionistic countermodel for S is a finite
DAG-valuation for S in which the value of S is not >.

A sentence S is a classical tautology (notation: S ∈ Taut(CPL)) if S has
no classical countermodels; a sentence S is a ZHA-tautology (notation: S ∈
Taut(ZHAL)); and a sentence S is an intuitionistic tautology (notation: S ∈
Taut(IPL)) of S has no finite-DAG countermodels.

It is a standard result that the intuitionistic theorems are exactly the finite-
DAG tautologies; this can be seen using Gödel translation (see [Göd86] and
[Tro86]) to translate S to S4, and then using modal tableaux for S4 ([Fit72])
to look for a countermodel; in standard terminology, W is a set of “worlds”, A
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is an “accessibility relation” or a notion of which worlds are “ahead” of which
other ones, and (W,A∗) is a Kripke frame for S4.

The sentence S = SP ∨ SQ ∨ SR of the beginning of the section is a good
example for introducting tableau methods for modal logics to “children”, as the
tableau that it generates doesn’t have branches. We can present the method
directly and in elementary terms, as we will do now.

Fix a set W and a relation A ⊆ W ×W . We will say that β is “ahead” of
α when (α, β) ∈ A∗, i.e., when there is a path α→ . . .→ β using only arrows
in A. Let P and Q be open sets in OA(W ). The only way to have P ∨Q false
in a world α (notation: (P ∨Q)α = 0) is to have Pα = 0 and Qα = 0. The only
way to have P → Q false in a world α, i.e., (P → Q)α = 0 is to have Pβ = 1
and Qβ = 0 in some world β, with β ahead of α.

Let ((W,A), v) be a finite DAG-countermodel for S = SP ∨SQ ∨SR. Then
v(P ), v(Q), v(R) ∈ OA(W ); we will omit the ‘v’s. If ((W,A), v) is a counter-
model this means that S 6= >, and there is some world α in W in which Sα = 0.
Fix this α. Sα = 0 means (SP ∨ SQ ∨ SR)α = 0, which means that (SP )α = 0,
(SQ)α = 0, and (SR)α = 0. (SP )α = 0 means (P → (Q ∨ R))α = 0, which
means that there is a world β ahead of α in which Pβ = 1 and (Q ∨ R)β = 0,
and (Q∨R)β = 0 means Qβ = 0 and Rβ = 0; similarly, (SQ)α = 0 means that
there is a world γ ahead of α in which Qγ = 1, Rγ = 0, Pγ = 0, and (SR)α = 0
means that there is a world δ ahead of α in which Rδ = 1, Pδ = 0, Qδ = 0. In
diagrams:

α

β
��������

α

γ
��

α

δ
��???????

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Pβ = 1

(Q ∨R)β = 0

Qβ = 0

Rβ = 0

�������

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Qγ = 1

(R ∨ P )γ = 0

Rγ = 0

Pγ = 0

��

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Rδ = 1

(P ∨Q)δ = 0

Pδ = 0

Qδ = 0

��??????

Note that β and γ are “independent” in the sense that in A∗ we can’t have
an arrow β → γ and neither an arrow γ → β; we can’t have β → γ because
Pβ = 1 but Pγ = 0, and we can’t have γ → β because Qγ = 1 but Qβ = 0.
We can use a similar argument to show that γ and δ are independent, and to
show also that δ and β are independent.

We can’t have three independent points in a 2-column graph, so we have
finite DAG-countermodels for S but no 2CG-countermodels for S, and so no
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ZHA-countermodels for S. This means that S is not an intuitionistic tautology,
but it is a ZHA-tautology. It is easy to see that Taut(IPL) ⊂ Taut(ZHAL) ⊂
Taut(CPL), and we saw that S 6∈ Taut(IPL), S ∈ Taut(ZHAL), (¬¬P → P ) 6∈
Taut(ZHAL), (¬¬P → P ) ∈ Taut(IPL), which means that:

Taut(IPL) ( Taut(ZHAL) ( Taut(CPL)

and so “ZHA Logic”, which we have not defined via a deduction system, only
by the notions of “ZHA countermodels” and “ZHA tautologies”, is strictly
between Intuitionistic Logic and Classical Logic, and is different from both.

References

[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006.

[Cor04] D. Corfield. Towards a Philosophy of Real Mathematics. Cambridge,
2004.

[CZ97] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford, 1997.

[Dal08] D. van Dalen. Logic and Structure (4th ed.) Springer, 2008.

[Fit72] M. Fitting. “Tableau Methods of Proof For Modal Logics”. In: Notre
Dame Journal of Formal Logic XIII.2 (Apr. 1972), pp. 237–247.
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The present book is a book of essays, all by Guillermo E. Rosado Had-
dock, retired Full Professor of Philosophy at the University of Puerto Rico
“Ŕıo Piedras”. It combines two sorts of writings: papers published in peer
review journals or as chapters of books, in addition to three – essays (2), (4)
and (7) – unpublished so far, and critical studies. The book is divided into
three parts. The first, titled Some Fundamental Issues, consists of papers (1-
6) concerned with philosophical themes: from the relations among philosophy,
logic and mathematics to the semantic structure of reference, from the epis-
temic status of a posteriori statements to that, ontological, of concepts and the
role of intuition. The second, Husserl and other Philosophers (papers 7-11), is
concerned mostly with Husserl’s views about logic and mathematics in com-
parison with those of some eminent philosophers like Kant, Frege and Carnap,
in order to reveal differences and common origins, and with those of one great
mathematician of the past: Riemann. Finally, the third part – Doing Rigor-
ous Philosophy – contains critical studies of books (12-20), mostly on Frege’s
views, Husserl’s influence on Carnap and Husserl’s work on logic, and a critical
commentary (21) of a long paper on naturalism by Kanitscheider.

The book is written by a philosopher devoted to rigorous analysis and
methodology that honestly rejects the widespread and apparently simplistic
division of philosophy in analytic versus continental: it is just a prejudice to
think that this rejection would open “the doors to all sorts of irrationalisms and
obscurantisms” (p. ix). Author’s intention is clearly to trace the boundaries
between orthodox approaches to analytic philosophy and “unorthodox”, those
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that are not led by an ideologically blinded empiricism. The label ‘unorthodox
analytic philosophy’ serves precisely the Author to point out that one cannot do
serious philosophy without taking in account the development, at least, of the
three more exact sciences – logic, mathematics and physics – but presupposing
the “meta-dogma of empiricist ideology” (p. 1).

To be honest, Author’s concerns have been here more with logic and math-
ematics, rather than physics, but still mathematics finds its own empiricism’s
ideological cousin in nominalism. Nominalism, albeit in different ways artic-
ulated, is the attempt to avoid accepting abstract entities that are not indi-
viduals – qualia, introduced by Nelson Goodman, are. Quine’s “incorrect” –
according to the Author – theses or criterion that ‘to be is to be the value
of a (first-order) variable’ has served and still serves nominalism to justify its
own principles about a flat ocean of individuals as structurally designed by
first-order logic: yet, “if they accept the semantics of classical first-order logic,
that is classical model theory, there is no way out of Platonism, since one is
dealing with full blown mathematical structures” (p. 2). On the other hand,
unorthodox analytic philosophy is essentially a contemporary version of rigor-
ous philosophy, in its most genuine sense, whose Frege, Husserl, Popper and
Whitehead, for different reasons, are just some of the most eminent – among
the many, especially nowadays, analytic philosophers – key players, since they
in no way accepted that meta-dogma.

After this general introduction to the spirit of the book, it seems to me time
to deepen the contents presented and articulated by the Author. I’ll come back
to some considerations about Author’s Platonist reading of Husserl’s thought
later. Since there is a lot of material here, for matter of space and opportunity
my eyes will not linger on every topic if not briefly, with exception of the
most relevant chapters, selected in order to provide a coherent and satisfactory
review of the whole work.

The first chapter (or paper) gives the reader the adequate frame to read
and interpret Author’s investigations. It discusses the interplay between logic,
mathematics and philosophy, as mentioned in the title. The Author offers var-
ious examples, from the application of group theory to semantics – “a clear
case of the application of the mathematical theory of groups of transforma-
tions to philosophical semantics” (p. 17) – to the application of Husserlian
philosophical semantics to logic where, f.i., it is well remarked how for Husserl
not truth-values but, rather, states of affairs are the referents of statements. A
choice, this one, “by far more informative than Frege’s” (p. 16), where truth-
values make statement to collapse. However, the core of the chapter is devoted
to remark how the basic principle of nominalism is simply a meta-dogma, a
meta-semantic criterion whose valid application is unjustified. Indeed, the Au-



Reviews 167

thor proceeds, even confining themselves to first-order logic for avoiding any
commitment further to that to mere individuals (abstract entities), nominalists
have to do with both structures in a pure infinitary (to be read “non construc-
tive”) way and mathematical objects: the classic examples are the Upward
Löwenheim-Skolem Theorem and the Robinson’s Model Completeness Test.
In few words, the interplay between the limitation to first-order theories and
those theorems simply forces us to “accept classical, that is, first-order model
theory” but not to refute abstract entities. It is shown that by the former
theorem, infinitary non-denumerable structures are proved to exists and that,
by the latter, true existential statements on mathematical entities cannot be a
priori refuted. Hence, the acceptance of model theory – the acceptance, that
is, of the possibility for logic of speaking about mathematics – turns Quine’s
criterion to a meta-dogma.

The Fine Structure of Sense-Referent Semantics (An Excursus into Seman-
tic and Mathematical Platonism) is the first of the three papers published here
for the first time. It is concerned with a deep introduction to and an application
of Husserl’s distinction between sense and referent – that distinction has been
erroneously and unjustly attributed only to Frege, as the Author motivates in
the introduction. Author’s attention falls on statements and not of concepts
words, just sketched. Such a distinction is articulated between modes of pre-
sentation of states of affair (sense) and states of affair or situation of affairs –
roughly, equivalence classes of the states of affairs – (reference). In order to
see the differences between the two semantic theories, the Author suggests to
define a notion of depth of a semantic theory of sense and referent:

[T]he depth of a sense-referent semantic theory is the number of
semantic levels between the sense of a statement and its truth-
value. In virtue of that definition, it follows that Frege’s choice
of a sense-referent theory has depth 0, whereas a semantic theory
that has states of affairs as the referents of statements, but does
not take into consideration the situations of affairs, has depth 1,
and a theory like Husserl’s, that considers both states of affairs
and situations of affairs as intermediate levels between the level of
senses and that of truth-values has depth 2. For semantic theories
of natural languages that seems certainly enough. (p. 36)

An example of the application of the theory is to logic, in the case of
first-order propositional functions: they have to be conceived as schemes of
states of affairs. The application to mathematics is restricted to mathematical
statements (theorems) and generates specific referents: sets of states of affair
or abstract states of affair. The paper, then, proceeds about dual statements
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in mathematics and logic, on some meta-logical considerations and accounting
for the case of Platonism in semantic theories.

The third paper, according to the Author, is “the most ambitious” (p. 7)
and, thus, I dedicate to it some attention, all the more so that the fourth essay
“On Analyticity a posteriori and Syntheticity a priori” – published here for
the first time – “is a sort of less rigorous presentation of the results in the
former” (Ibid.). This is a paper of epistemic value, likewise (4), that wonder
whether analytic a posteriori statements are possible. In order to provide an
answer, a new definition of analyticity – a refinement of Husserl’s – is presented.
The new definition of analyticity proposed seems to well survives criticisms
to Kant’s, Frege’s and Carnap’s definitions and, even, to that to Husserl’s
one. If Kant’s definition is twofold, i.e., (a) as statement whose concept of
its predicate is included in the concept of its subject and/or (b) as derivable
from the Principle of Non-Contradiction, only (b) survives Quine’s criticism of
Two Dogmas. Inspired to (b), the unfortunate Frege’s definition, as statements
that can be derived from logical principles and definitions, does not survive “the
collapse of logicism” (p. 59). Husserl’s seems to be “more solid” (Ibid.), then:
a statement is analytic if it is true and its truth can be completely formalized
salva veritate. Author’s attempt here is to overcome the unavoidable weakness
of the Husserlian definition, traceable in its profound adequacy as a notion
of logical truth. With respect to previous attempts (refinement of Husserl’s),
where the Author formulated unsatisfactory definitions, the new one adds an
extra condition (iii).

A statement σ is analytic if and only if: (i) {σ} has a model M , (ii)
if {σ} has a model M , then any structure M∗ isomorphic to M is
also a model of {σ}, and (iii) {σ} does not imply or presuppose the
existence either of a physical world or of a world of consciousness.
(p. 61)

Notwithstanding this definition, the answer to the question made in the
title of the paper is, in a strict sense, ‘no’. Indeed, it is argued for the existence
of analytic statements just as instantiations of analytic laws (or constant-free
statements). Those are what Husserl called “analytic necessities”: statements
with constants obtained by quantifier elimination from analytic laws. Since
they are instantiations, they are a posteriori. Such instantiations of analytic
laws, the Author argues however, do not satisfy (iii) above, being that constants
occurring in them not necessarily mathematical constants.

Essay (5) and (6) deal with different issues in unorthodox analytic phi-
losophy, already touched in the first essay. In particular, the former – Some
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Heterodox Analytic Philosopher – presents a deepening of the argument about
Robinson’s Model-Completeness test in first-order model theory and its role
to refute nominalism. The latter, the last paper of this first part of the book,
serves instead the Author as a sort of transition to the second group touch-
ing an issue treated also in (7), namely, a critique of one of Kant’s arguments
occurring in the Transcendental Aesthetic of the first Critique whose purpose
was to show that space (and time also) is not a concept but an intuition. As
clearly pointed out in the Abstract, “[i]t is here shown that Kant’s conclusion
is completely unfounded, since one can reproduce those arguments on the basis
both of the concept of a continuous manifold in Riemann’s sense and of that of
an extensive whole in Husserl’s sense” (p. 105). Thus, reference to Riemann’s
views on the nature of (geometrical and empirical) space are fundamental. Fi-
nally, some remarks on Frege’s and Husserl’s divergences on the notion of whole
are presented and discussed.

Here the second part of the volume begins. I will focus much more attention
to essays (7) and (8) for different reasons: for the former is one of the unpub-
lished paper so far and for the latter is concerned with the many reasons why
Husserl should be considered an analytic but, clearly, unorthodox philosopher.

It is immediately apparent the topic of chapter (7), titled Husserl and Kant:
voilà la différence. Too many times philosophers, both analytic and continental,
did not clearly recognized rightly both convergences and divergences between
the two. Certainly, both Kant and Husserl used the adjective ‘transcenden-
tal’ in naming their philosophy or philosophical approaches on the “common
interest in putting the ‘transcendental subject’ at the centre stage of philosoph-
ical research and examining the conditions of possibility of having (scientific)
knowledge” (p. 115). This approach becomes mature since Descartes but,
according to the Author, if for Kant surely the theory of knowledge was first
philosophy, on the other hand Husserl’s thought cannot be confined in his tran-
scendental phenomenology, clearly immersed in that tradition. In his course on
old and new logic (1908-1909) – after the transcendental turn – Husserl clearly
emphasized that it is philosophical logic which deserves the name of first philos-
ophy – this anticipates, in a sense, what is argued in the next essay about the
analytic character of Husserl’s philosophical investigations. After a recall on
Kant’s theoretical philosophy and an introduction to Husserl’s thought prior
to his phenomenology, the Author reveals the main difference. The section On
Husserl on Logic and Mathematics highlights Husserl’s conception of mathe-
matics and how it is distant in many points from that of Kant. Take some:
(i) mathematics is a “formal ontology”, “which is basically a conception of
mathematics as a theory of structures” (p. 130), against Kant’s purely phe-
nomenical and constructive view of mathematical entities; (ii) mathematics
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“can be seen as a generalization of Riemann’s conception of mathematics as
a theory of manifolds” (Ibid.), that clearly contrasts with Kant’s own reduc-
tionist conception; (i) and (ii) are then strictly related to the fact that (iii)
mathematics is not based on one single fundamental mathematical concept,
given that Husserl “acknowledged a plurality of fundamental concepts, which
he called ‘formal ontological categories’” (Ibid.). Furthermore and quite obvi-
ously, Husserl’s conception of mathematics influenced his own view about the
nature of intuition, again relevantly divergent from Kant’s. Should be sufficient
here to underline that two forms of intuition are possible, according to Husserl:
the eidetic intuition or intuition of essences – and essences were banned from
Kant’s system – and the categorical intuition by which “even in our most sim-
ple ‘sensible’ perceptions there are categorial components – purely formal and
intellectual for Kant – namely, states of affairs, relations, sets, etc.” (p. 136)
further to space and time.

With the eight paper, the Author feels the reader ready to see in which sense
Husserl’s many contributions were literally “ignored” by analytic philosophers,
from to the philosophy of logic and mathematics to the epistemology of math-
ematics, passing through the philosophy of language and even the philosophy
of physical science. The incipit is written in a way that could seem to be al-
most shocking to orthodox-friendly readers. The Author reports that in his
work Old and New Logic: Lessons 1908-1909, Husserl considers philosophical
logic – in the wide sense of logical analysis of concepts, language and even
their philosophical implications – as “the presupposition and foundation for
all the other genuine philosophical disciplines”; that it is, according to Husserl
himself, “first philosophy’”; and even that in his philosophical investigation
Husserl wants to proceed “analitically” (p. 145). Then, the paper comes back
on the sense and reference distinction in Frege and Husserl accounting, first,
for their independent ‘discovery’ – never accepted by analytic philosophers, yet
by Frege – and, second, for the different semantic approaches to it, as I already
mentioned. By the third section the Author writes about Husserl’s refutation
of psychologism in logic. An argumentation, this, judged properly analytic for
it does not presuppose any phenomenological thesis and far superior in details
and organization to Frege’s one. The fourth section is, instead, dedicated to
what Husserl thought about physical theories. The Author notices here the
realist character of Husserl’s conceptualist view on such theories, as they are
based on hypotheses cum fundamento in re (p. 154):

There is, thus, an ontological connection between objects (or con-
cepts) that is objective and serves as a base for the building of even
the most primitive sciences. (p. 153)



Reviews 171

The sixth section is about Husserl on logic and mathematics. The great
distance from logicists (Frege) consists in that, contrary to them, the two
are parallel and not reducible disciplines: if “logic is essentially a syntactic-
semantic discipline”, on the other hand, “mathematics is more ontologically
committed” (p. 157). The paper ends with Husserl’s response to a letter from
Frege (of 1906) and with a very brief appendix on his work Philosophie der
Aritmetik.

I will not spend to too many words on the next three essays for almost all
their contents have already been sketched writing about the previous items.

The ninth paper is concerned with Husserl’s influence on Carnap. It is an
issue on which the Author wrote a lot: a whole book The Young Carnap’s
Unknown Master (published in 2007), a paper – ‘On the Interpretation of
the Young Carnap’s Philosophy’ – included in a precedent collection of essays
(Against the Current, published in 2013), and a critical study of Carnap’s
doctoral dissertation Der Raum (1922) – essay (15). This is a delicate issue,
since the Author acknowledges strong influence of Husserl and the intellectual
dishonesty of Carnap, telling us he knows of Carnap’s appropriation of Husserl’s
ideas both as of Carnap’s distinction (in Logische Syntax) between formation
rules and transformation rules, mentioned in section 5 and 6 of (8), and as of
the constitution of the heteropsychological in Carnap’s Aufbau.

Husserl and Riemann is a paper on the influence of the great mathematician
on Husserl. The importance of this topic to understand the origin of Husserl’s
views on mathematics as a formal ontology (a theory of formal structures)
has been reported several times here, and appears in some details in section
5 of (1), 4 of (6), 4 an 5 of (7) as well as 3 of (8). After briefly showing that
Frege had almost no influence on Husserl’s views on logic and mathematics
as well as on the sense-referent distinction, the Author argues that Husserl’s
conception of mathematics as a theory of structures and/or of manifolds is a
direct generalization of Riemann’s notion of manifold and that his views on
physical geometry (empirical space) came directly from Riemann’s reflections,
as attested by letters of 1892 to Brentano, and of one 1897 and one another of
1901 to Natorp.

Finally, the eleventh and last paper of this second part, is concerned with
with Husserl’s contributions to the nature of mathematical knowledge or, bet-
ter, with his epistemology of mathematics. Such contributions are clearly
opposed to both the naturalist and the empiricist approaches, but even to
pragmatist tendencies. In particular, the paper introduces to such mainstream
tendencies and argues that they fail to distinguish the historical problem of
the origin and evolution of mathematical knowledge from the epistemological
one.
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The third part is made of ten critical studies, nine of books and one, the
last, of a paper. The choice of including critical studies in this collection is due
to their usefulness “in polishing and developing” (p. ix) Author’s views and as
tools and models of analysis in making philosophy.

The first two critical studies are very extensive (about 30 pp. each) and
about collections of papers both on Frege’s works and philosophy and both
edited by the Fregean scholar Matthias Schirn. If the Author confesses “that in
the later years I have felt disappointed with the popularity that some erroneous
and sometimes almost crazy interpretations of Frege have had in the Anglo
American world” (p. 9), this has to be restricted, in particular, with respect
exactly six papers of the second volume of the first collection, considered a
”sample of the great prevailing confusion on how to interpret both Frege’s
view from 1879 and especially his view of 1892” (p. 237). For what concerns
the second collection, mostly on Frege’s philosophy of mathematics, the Author
is convinced that will be regarded as an “irreplaceable reading”, providing a
“profound understanding of Frege’s contributions to philosophy”, including
“some of its weaknesses” (p. 267).

The review of Oswaldo Chateaubriand’s Logical Forms is the third critical
study we find. It is a two-volumes book of philosophical analysis of truth
and description and of logic, language and knowledge. No doubt that it would
deserve to be much better known. Here, the Author focuses in particular on the
discussion of Chateaubriand’s criticism to Quine and the characterization of
logical truth. Furthermore, though Chateaubriand seems not to be acquainted,
many affinities between some of his views on logical and semantic issues and
those of Husserl are noticed.

The next two studies are both concerned with Carnap’s works and ideas in
a twofold way. Item (15) offers a brief exposition Carnap’s “not well known
and not well understood” (p. 9) doctoral theses Der Raum. The Author sees
here an apparent influence of Husserl on that work and tries “to correct some
misleading renderings of that work” (p. 327). In particular, Carnap’s defence
of the synthetic a priori is clearly but much nearer to Husserl’s views rather
than to Kant’s. The Author leaves, then, the reader with a question that “does
not seem to have an answer: Did Carnap discuss this issue with Husserl during
the years 1919 to 1921?” (p. 356). The fifth critical study, instead, analyses
a collection of essays on Carnap edited by Cirera, Ibarra and Mormann. The
Author critically assesses the several renderings of Carnap while sharpening
his own interpretations. Further, he presents criticisms to some consequences
of the demise of neopositivism.
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The next four (17-20) critical studies have various subjects. Item (17)
concerns a publication by Elisabeth Schuhmann of lectures of Husserl on old
and new logic of 1908-1909 – after his transcendental turn. In this review the
Author will concentrate on a few issues that will better understand Husserl’s
relation to analytic philosophy in general. There, Husserl stresses that philo-
sophical logic is first philosophy and not transcendental phenomenology, as
discussed in more details in (7). Worth noting the fact that Husserl answers
critically to Frege’s “confusion” – in his letters to Husserl of 1906 – of iden-
tifying what is having the same sense with what is being logically equivalent.
The review of the book Lógica, Matemáticas y Realidad by Anastasio Alemán
is essay (18). It touches each issue included, but is mainly concerned with the
papers more directly related to philosophy of mathematics (papers 1-3 and 5).
The eight critical study, is of a collection edited by Jaakko Hintikka and titled
From Dedekind to Gödel that, contrary to most collections on the philosophy
of mathematics, allows not so well known interpreters to have space. This ex-
plains why the review itself is titled The Other Philosophers of Mathematics:
the term ‘other’ is used in the sense of ‘non-Frege’. The Author feels particu-
larly interested, even if he judges as “unbalanced” (p. 419), the combination of
contributions and their contents. The last study (20) is an assessment of a book
of essays edited by the Fregean scholar Dirk Greimann Essays on Frege’s Con-
ception of Truth. It consists of nine papers, some of which are only marginally
concerned with Frege’s views about truth, even for Frege wrote relatively little
on that issue. According to the Author, it “can serve as perfect examples of
the reinterpretation of Frege’s views” (p. 445) on truth. At the same time
the Author feels not very satisfied when he comments that “[i]n general, this
collection of papers is not especially illuminating. I have opted to say very
little about some of the papers, in order to concentrate my efforts on pointing
to some weaknesses of a few of the most questionable ones” (p. 446).

Finally, a commentary to a long paper by Bernulf Kanitscheider, published
in Erwägen Wissen Ethik, now extinct. The format of the journal was very
similar to that of The Library of Living Philosophers but, here, a philosopher
wrote a long paper and some twenty scholars criticized him. Then, the original
author responded to their criticisms. What the Author sees relevant of this
reading is that it clearly arises how Kanitscheider is assuming as valid Quine’s
views on naturalized epistemology as well as those on ontology: “a naturalism
for which the unity of nature can be considered as the guiding idea” (p. 462).

Let me spend a few words on Author’s work on Husserl, Husserl conception
of mathematics.
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Regarding Husserl in particular, readers who are looking for an analysis
of Husserl’s views on transcendental subjectivity, intentionality or conscious-
ness will not be satisfied. The focus of the book is clearly other than the
structures of transcendental subjectivity and its faculties or operations, that
occupied Husserl in his distinctively phenomenological writings. The empha-
sis on Husserl’s unorthodox approach to philosophical analysis and theoretical
constructions stresses the role of philosophical logic, rather than of transcen-
dental logic, as first philosophy. From this, it arises quite natural to interpret
Husserl’s transcendental phenomenological turn as a matter of mere method-
ology, a philosophical device for conceptual analysis. A consequence may be,
then, the conclusion that a Platonist tendency of realism survives his transcen-
dental turn.

At the same time, the issue of whether Husserl is a realist or an idealist
(conceptualist) about mathematics and mathematical entities may not seem
to be plainly clear to some readers. Recall what the Author notices about
the realist foundation of Husserl’s conceptualism about physical theories, as
they are based on hypotheses cum fundamento in re (p. 154). Such a notion is
introduced recalling that such theories “go far above the realm of [empirical] in-
duction”. According to this passage, physical theories and mathematics, then,
seem to have (partially) overlapping domains, at least with respect to those
regions of physics being not linked to empirical induction. Thus, it seems
plausible to extend Husserl’s view up to his conception of mathematics and
mathematical entities conceived as (infinitary) structures. In this case, math-
ematical structures would have fundamentum in re. In this case, the relation
between philosophical and transcendental logics discussed above would lead
the reader of Husserl to imagine his idealism as a form of epistemic Platonist
structuralism, despite the constructivist bias often associated to his epistemic
view (or phenomenology) and surely due to the impact and affection of the
phenomenological turn.

In particular, an answer to the issue of whether Husserl’s kind of idealism
can be articulated as a form of constructivism about mathematics (i.e., a pred-
icative view) or as a form of mathematics more similar to that of Frege (i.e., an
impredicative one) may find out an answer looking to the notions of intuition
discussed in (7). Author’s position seems to be that Husserl had strong Platon-
ist tendencies and I personally agree with him. Both forms of intuitions, the
eidetic and the categorical, lead the transcendental subject to the knowledge of
the essence and of the formal structure constituting the essence itself – states
of affairs, relations, sets, etc. – respectively. It is a fact. But this might, then,
give back a non reductionist but Platonist form of realism about mathematics:
a formal ontology. This hardly can be seen as a form of constructivism.
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Notwithstanding these issues, Unorthodox Analytic Philosophy can be highly
recommended for its perspective on several issues in analytic philosophy. Husserl’s
contributions on foundational issues in logic, mathematics and the exact sci-
ences have been long neglected without concrete rationales. I found it a plea-
sure to read this collection of essays. They are clearly written and thought-
provoking, especially those (analytic) philosopher who, even nowadays, knows
almost nothing about the origin of Husserl’s theoretical visions on formal on-
tology and his contributions on logic and mathematics. The book covers an
interesting range of topics in a vibrant and harmonic sound. Rosado Had-
dock is also, unlike most analytic philosophers, a Platonist about logic and
mathematics, but it comes quite natural to be in the suffocating season of phi-
losophy affected by the orthodox analytic influence. Hopes and efforts have to
be oriented to end that epoch of philosophy.
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