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Abstract

The literature about quantum theories emphasizes that the algebraic
structures associated to orthodox quantum mechanics are non-distributive.
In this paper we present a usual development on quantum algebras, the
ortholattices, and a correspondent deductive system associated to them,
the orthologic. Then, we show the adequacy between the algebraic or-
tholattices and the propositional orthologic using specifically algebraic
models.
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Introduction

The algebras of quantum theories are non-distributive and the corresponding
logics are also non-distributive relative to the operators of conjunction and
disjunction. Because of that it is not possible to use the famous theorem of
Stones Isomorphism to establish their completeness. For more details on the
beginning of quantum theories related to logic we suggest [1], [3], [6], [8] and
[19].

Considering this non-distributivity originated from the non-distributivity
of closed Hilbert spaces used in the foundation of Physical Theories, there is
a tradition to associate to the quantum theories the basic algebraic structure
named ortholattice as a first algebraic approximation.

Goldblatt [9] and Dalla Chiara, Giuntini and Greechie [6] have used an
interesting semantic in Kripke’s style to connect the algebraic models of ortho-
lattices with the propositional quantum logic, the orthologic.

In this paper, we present algebraic aspects of quantum algebras and, then,
we introduce a short deductive system very similar to those presented in above
papers. We show some derivations on this Tarski system.

As an original contribution, we present a completely algebraic proof of
soundness and completeness of orthologic relative to the ortholattices.
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1 Algebras of quantum theories

Here we just present some elements of algebraic logic for the development of
quantum logics. These elements are well known and can be met in several texts
as [17], [18], [14], [5], [7] and [12].

Definition 1.1 (Lattice) A lattice is an algebraic structure L = 〈L,f,g〉 such
that L is a non-empty set, f and g are two binary operations on L and for all
a, b, c ∈ L:

L1 (af b)f c = af (bf c) and (ag b)g c = ag (bg c) [associativity]
L2 af b = bf a and ag b = bg a [commutativity]
L3 (af b)g b = b and (ag b)f b = b [absorption].

Proposition 1.2 If L = 〈L,f,g〉 is a lattice and a, b ∈ L, then it holds:
L4 af a = a and ag a = a [idempotency]
L5 af b = a⇔ ag b = b [ordering].

Using condition L5, we can define a relation of partial order on L =
〈L,f,g〉.

Definition 1.3 (Order) a ≤ b⇔ af b = a⇔ ag b = b.

Proposition 1.4 If L = 〈L,f,g〉 is a lattice and a, b, c, d ∈ L, then:
L6 a ≤ ag b and b ≤ ag b
L7 af b ≤ a and af b ≤ b
L8 a ≤ c and b ≤ c⇒ ag b ≤ c
L9 c ≤ a and c ≤ b⇒ c ≤ af b
L10 a ≤ c and b ≤ d⇒ ag b ≤ cg d
L11 a ≤ c and b ≤ d⇒ af b ≤ cf d.

We have defined lattice as an algebraic structure, but this concept can also
be introduced as an ordering structure L = 〈L,≤〉.

Definition 1.5 (Partial order) A binary relation ≤ on a non-empty set L is
a partial order if the relation ≤ is reflexive, antisymmetric and transitive.

Definition 1.6 (Poset) A partially ordered set is a pair 〈L,≤〉 such that L is
a non-empty set and ≤ is a partial order on L.

Definition 1.7 (Supremum) Let 〈L,≤〉 be a poset and a, b ∈ L. A supremum
of {a, b}, if it exists, is an element c ∈ L such that:

(i) a ≤ c and b ≤ c
(ii) if a ≤ d and b ≤ d, then c ≤ d.
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A supremum, if it exists, is unique.
An infimum of {a, b} is defined dually. It is unique, if it exists.
It is usual to denote the supremum of {a, b} by sup{a, b} or a g b and the

infimum of {a, b} by inf{a, b} or af b. The supremum of {a, b} is also named
the least upper bound of {a, b} and the infimum of {a, b} is called the greatest
lower bound of {a, b}.

If 〈L,≤〉 is a poset such that for all a, b ∈ L there exist inf{a, b} and
sup{a, b}, then the algebraic structure determined by 〈L,f,g〉 in which:

af b = inf{a, b} and ag b = sup{a, b}

is a lattice.

It is straightforward to observe that these operations f and g satisfy the
associative, commutative and absorption properties.

We can easily prove that the laws L1 to L11 hold for the poset 〈L,≤〉.
This way we can always see a lattice as a structure L = 〈L,≤,f,g〉.

Lemma 1.8 If L = 〈L,≤,f,g〉 is a lattice, then:
L12 (af b)g (af c) ≤ af (b ∨ c)
L13 ag (bf c) ≤ (ag b)f (ag c).

Proof. The result follows from L6, L7, and L8. �

Definition 1.9 (Distributive lattice) A lattice L = 〈L,≤,f,g〉 is distributive
if the following distributive laws are valid for all a, b, c ∈ L:

L14 (af b)g c = (ag c)f (bg c) and (ag b)f c = (af c)g (bf c).

These are the right distributive laws and, due to the commutative prop-
erty, the left distributive laws are also valid. Besides, only one of these two
distributive laws would be enough to characterize the distributive property
[14].

Definition 1.10 (Lattices with 0 and 1) Let L = 〈L,≤,f,g〉 be a lattice. If
L has the least element with respect to the order ≤, then this element is called
the zero of L and is denoted by 0. On the other hand, if the lattice L has the
greatest element with respect to the order ≤, then this element is called the one
of L and it is denoted by 1.

If the lattice L has the elements 0 and 1, then for every a ∈ L:
L15 af 0 = 0 and ag 0 = a
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L16 af 1 = a and ag 1 = 1.

We denote a lattice with 0 and 1 by L = 〈L,≤,f,g, 0, 1〉.

Definition 1.11 (Pseudo-complement) Let L = 〈L,≤,f,g, 0, 1〉 be a lattice
with 0 and 1. For a ∈ L, if there exists the element −a = max{y ∈ L : af y =
0} in L, then −a is called the pseudo-complement of a.

Definition 1.12 (Pseudo-complemented lattice) A lattice L is called pseudo-
complemented if every element a ∈ L has a pseudo-complement −a ∈ L.

Definition 1.13 (Complement) Let L = 〈L,≤,f,g, 0, 1〉 be a lattice with 0
and 1. If a ∈ L, then an element a ∈ L is called a complement of a in L if:

L17 af a = 0
L18 ag a = 1.

The complement a is a pseudo-complement. But, for example, the intu-
itionistic pseudo-complement of Intuitionistic Logic is not a complement.

Definition 1.14 (Complemented lattice) The lattice L = 〈L,≤,f,g, 0, 1〉 is
called complemented if every element in L has a complement in L. If every
element of L has exactly one complement, then the lattice L is called uniquely
complemented.

If the complement of a is unique, we will denote it by ∼ a. If a lattice L is
uniquely complemented, then we write L = 〈L,≤,∼,f,g, 0, 1〉.

Lemma 1.15 Let L = 〈L,≤,f,g, 0, 1〉 be a distributive lattice with 0 and 1.
If there exists a complement of a, then it is unique.
Proof. If y and z are two complements of a, then a f y = 0, a g y = 1,
a f z = 0, and a g z = 1. As z = 0 g z = (a f y) g z = (a g z) f (y g z) =
1f (y g z) = y g z, we have, y ≤ z. Analogously, z ≤ y and, hence, z = y. �

Definition 1.16 (Boolean algebra) A Boolean algebra B is a distributive and
complemented lattice.

The next results are particular cases of quantum algebras and good refer-
ences are the texts [6] and [15].

Definition 1.17 (Poset with involution) Let L = 〈L,≤, 0, 1〉 be a poset. An
involution on L is a unary operation, denoted by ′, such that for all a, b ∈ L:

L19 a = a ′ ′

L20 a ≤ b⇒ b ′ ≤ a ′.
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Then, L = 〈L, ′,≤, 0, 1〉 is a poset with involution.

Proposition 1.18 If L = 〈L, ′,≤, 0, 1〉 is a poset with involution, then the
De Morgan’s laws hold:

L21 (af b)′ = a ′ g b ′

L22 (ag b)′ = a ′ f b ′.

Indeed, in view of L20 in L = 〈L,≤, ′, 0, 1〉 the conditions L20, L21 and
L22 are equivalent.

Besides, in this case, sup{a, b} is defined if, and only if, inf{a, b} is also
defined.

Definition 1.19 (Ortholattice) An ortholattice is a complemented lattice with
involution.

We denote a such structure by L = 〈L,≤, ′, f,g, 0, 1〉.
So in an ortholattice all the conditions L1 - L22, except distributivity L14,

are valid.
This way of including properties mirrors the achievement of Boolean algebra

as in the tradition of Heyting algebras with intermediate algebras (Heyting
algebra - Boolean algebra), with the difference of non-distributivity. The way
from any ortholattice to a Boolean algebra has so many points and we can add
several additional conditions or algebraic axioms depending on the path.

Following this context, the ortholattices are considered basic quantum struc-
tures.

In this paper we concentrate on ortholattices using only algebraic approach,
which we shall posteriorly apply to the other quantum algebraic systems.

Like a last structure, let’s define Kripke models as [6].

Definition 1.20 (Kripke model) A model in the Kripke style for a language
L has the following form: K = (W, ~R,~o,P(W ), v), such that:

(i) W is a non-empty set of possible worlds;
(ii) ~R is a sequence of relations over W ;
(iii) ~o is a sequence of operations defined over W ;
(iv) the subsystem (W, ~R,~o) is called the frame of K;
(v) P(W ) is the set of all subsets of W ;
(vi) v : V ar(L) → P(W ) is a valuation that applies each variable into the

set of all worlds where the variable is true or valid;
(vii) each valuation must preserve conditions that depend on the operators

~o of L;
(viii) the valuations must be extended for the set of all formulas of L.
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Usually we have only one binary relation R in the sequence ~R, called the
accessibility relation.

Considering that we almost always have relations involved in Kripke mod-
els, they are not exactly algebraic models, but a combination of algebraic and
relational structures.

2 Logic of ortholattices

We present in this section the Orthologic, denoted by OL, the logic of
ortholattices, in a similar version to [9] and [6] and oriented by [20].

There is an interesting tradition on logic for quantum theories. We mention
the following references: [10], [2], [11], [4] and [15].

The orthologic formalizes, in the logical language, some of essential char-
acteristics of quantum theories that are unveiled by the orthoalgebras.

We do not have an algebraic conditional operator and circumvent this situ-
ation using a deductive system without any logical implication. We found this
strategy for the first in [9].

The language of OL is indicated by L.
The above literature shows aspects of quantum logics.
The propositional language L has exactly the operators ¬ for negation, and

∧ for conjunction. Thus we take L = {¬,∧}.
The set of formulas of OL is denoted by For(L) and the set of propositional

variables by V ar(L) = {p1, p2, p3, . . .}. Of course V ar(L) ⊆ For(L).
Thus, For(L) is constructed from V ar(L) using only the symbols in L =

{¬,∧}.
We do not have the disjunction ∨ as a basic operator in the language L, but

considering that in any ortholattice the De Morgan laws hold, we can define
the disjunction of L by:

ϕ ∨ ψ =df ¬(¬ϕ ∧ ¬ψ).

Definition 2.1 (Configuration) For Σ ∪ {ψ} ⊆ For(L), a configuration is an
expression of type Σ ` ψ.

These configurations are schemes of formulas and we mean that we derive
the consequence at right of ` from the antecedent (a set of premises) at left
of `. The antecedent is a set of formulas and it is not required that it be a
sequence or a finite multiset as in some calculus of sequents.

Derivation is a figure composed by a sequence of configurations.
For a formal definition we need to explicit the rules for derivations.
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In general, if for i ∈ {1, 2, . . . , n}, Σi ∪ {ψi} ⊆ For(L), then each rule has
the form:

Σ1 ` ψ1, . . . ,Σn−1 ` ψn−1
Σn ` ψn

,

with the meaning that from the premises, the configurations above the line,
each rule permits the deduction of configuration Σn ` ψn.

The rules without premises are special cases, where the set of premises is

empty, such that instead of:
∅

Σ ` ψ
we just write Σ ` ψ.

Of course, the configuration ` ϕ must be understood as ∅ ` ϕ.

Now, we present the properties of derivability for the logical system OL.

This system does not have axioms, but only rules determined by the fol-
lowing configurations.

Rules without premises:

(ROL1) {ϕ} ` ϕ (auto-deductibility)

(ROL2) {ϕ} ` ¬¬ϕ (double negation)

(ROL3) {¬¬ϕ} ` ϕ (double negation)

(ROL4) {ϕ ∧ ψ} ` ϕ (simplification)

(ROL5) {ϕ ∧ ψ} ` ψ (simplification)

(ROL6) {ϕ ∧ ¬ϕ} ` σ (explosion)

Rules with one premise:

(ROL7)
Γ ` ϕ

Γ ∪ Σ ` ϕ
(monotonicity)

(ROL8)
{ψ} ` ϕ
{¬ϕ} ` ¬ψ

(contraposition)

(ROL9)
{ϕ,ψ} ` σ
{ϕ ∧ ψ} ` σ

(left conjunction)

Rules with two premises:
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(ROL10)
Γ ` ϕ, ∆ ∪ {ϕ} ` ψ

Γ ∪∆ ` ψ
(cut)

(ROL11)
{ψ} ` ϕ, {ψ} ` ¬ϕ

` ¬ψ
(absurdity)

(ROL12)
Γ ` ϕ, Γ ` ψ

Γ ` ϕ ∧ ψ
(right conjunction).

From auto-deductibility, monotonicity and cut, we observe that OL is a
logic of Tarski. These three rules are considered structural rules, that is, rules
without connectives. The other rules have the aim to put the particularities of
an ortholattice in the propositional context.

Definition 2.2 (Derivation) A derivation in OL is a finite sequence of con-
figurations Σ ` ψ such that each element in the sequence is a premise, or a
rule without premises, or a conclusion of a rule whose premises are previous
elements in the sequence.

Definition 2.3 (Derivable formula) A formula ψ is derivable from Σ if there
is a derivation such that the last element of derivation is the configuration
Σ ` ψ.

Definition 2.4 (Theorem) A formula ψ is a theorem of OL if it is derivable
from the empty set, that is, ∅ ` ψ or ` ψ.

Now we present some deduced rules in OL.

(a)
{ϕ} ` ψ, {ψ} ` σ

{ϕ} ` σ
(transitivity 1)

Consider the Cut
Γ ` ψ, ∆ ∪ {ψ} ` σ

Γ ∪∆ ` σ
with Γ = {ϕ} and ∆ = ∅.

(b)
Γ ` ψ, {ψ} ` σ

Γ ` σ
(transitivity 2)

Consider the Cut
Γ ` ψ, ∆ ∪ {ψ} ` σ

Γ ∪∆ ` σ
with ∆ = ∅.

(c)
Γ ` ψ, Γ ` ¬ψ

Γ ` ϕ
(contradiction)

1. Γ ` ψ premise
2. Γ ` ¬ψ premise
3. Γ ` ψ ∧ ¬ψ right conjunction in 1 and 2
4. {ψ ∧ ¬ψ} ` ϕ explosion
5. Γ ` ϕ (b) in 3 and 4.
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(d) If ϕ ∈ Γ, then Γ ` ϕ
1. {ϕ} ` ϕ auto-deductibility
2. Γ ` ϕ monotonicity in 1.

(e)
{ψ} ` ϕ, {¬ψ} ` ϕ

` ϕ
(proof by cases)

1. {ψ} ` ϕ premise
2. {¬ψ} ` ϕ premise
3. {¬ϕ} ` ¬ψ contraposition in 1
4. {¬ϕ} ` ¬¬ψ contraposition in 2
5. ` ¬¬ϕ absurdity in 3 and 4
6. ` ϕ double negation in 5.

This system is particularly planned for derivations but not for proofs of
theorems. However we can show some case of theorem.

(f) ` ψ ∨ ¬ψ (excluded middle)
1. {ϕ ∧ ¬ϕ} ` ϕ simplification
2. {ϕ ∧ ¬ϕ} ` ¬ϕ simplification
3. ` ¬(ϕ ∧ ¬ϕ) absurdity in 1 and 2
4. ` ¬ϕ ∨ ¬¬ϕ De Morgan in 3
5. ` ψ ∨ ¬ψ replacement in 4.

Goldblatt defined theorem in this logic as any formula ϕ such that ψ∨¬ψ `
ϕ holds [9].

Proposition 2.5 {ϕ1, . . . , ϕn} ` ψ ⇐⇒ ϕ1 ∧ . . . ∧ ϕn ` ψ.
Proof. (⇒) By n− 1 applications of left conjunction.

(⇐) By auto-deductibility we have {ϕi} ` ϕi, for 1 ≤ i ≤ n. Then, by
monotonicity {ϕ1, . . . , ϕn} ` ϕi, for 1 ≤ i ≤ n. From that, applying right
conjunction n − 1 times we have {ϕ1, . . . , ϕn} ` ϕ1 ∧ . . . ∧ ϕn and using the
hypothesis and the transitivity 2 we have that {ϕ1, . . . , ϕn} ` ψ. �

Proposition 2.6 (Finite deductibility) Σ ` ψ ⇐⇒ there is Σf finite such
that Σf ⊆ Σ and Σf ` ψ.
Proof. Each derivation is finite and uses only a finite number of formulas. �

Corollary 2.7 Σ ` ψ ⇐⇒ there are ϕ1, . . . , ϕn ∈ Σ such that ϕ1∧ . . .∧ϕn `
ψ.
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Definition 2.8 (Inconsistent and consistent sets) A set of formulas Σ is in-
consistent if there is a formula ψ such that Σ ` ψ∧¬ψ. The set Σ is consistent
if it is not inconsistent.

Definition 2.9 (Deductive closure) The deductive closure of the set Σ is the
set of all formulas derivable from Σ, that is, Σ = {ϕ : Σ ` ϕ}.

Of course Σ ⊆ Σ.

Definition 2.10 (Theory) Theory is a set of formulas deductively closed, that
is, Σ = Σ.

3 Soundness

In this section we show that every derivation in OL is sound, that is, if
we have a syntactical derivation Σ ` ψ, then we also have a consequence of ψ
from Σ but in a semantic context.

As a first step we need to present this semantic consequence.

Definition 3.1 (Restrict valuation) Let L be an ortholattice. A restrict val-
uation is a function v̆ : V ar(L) → L that maps each variable of OL over an
element of L.

Definition 3.2 (Valuation) Valuation is a function v : For(L) → L that ex-
tends naturally and uniquely the function v̆ as follows:

(i) v(p) = v̆(p)
(ii) v(¬ϕ) = v(ϕ)′

(iii) v(ϕ ∧ ψ) = v(ϕ)f v(ψ).

Definition 3.3 (Algebraic realization) Algebraic realization is a pair (L, v)
such that L is an ortholattice and v is a valuation for OL.

Definition 3.4 (Algebraic model) Let Γ ⊆ For(L) and (L, v) an algebraic
realization for OL. Then A = (L, v) is an algebraic model for Γ, or A satisfies
Γ, if v(γ) = 1, for every γ ∈ Γ.

We denote that A = (L, v) is a model for Γ by A � Γ and, in particular, if
ϕ ∈ For(L) and v(ϕ) = 1, then A � ϕ.

Definition 3.5 (Validity in L) A formula ϕ is valid in L if for every valuation
v, the algebraic realization A = (L, v) satisfies ϕ, that is, A � ϕ, for every
valuation v.
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In this case we fix L but take any valuation v.

Definition 3.6 (Valid formula) A formula ϕ is valid if it is valid in any alge-
braic realization A.

Now we do not fix any valuation v neither any ortholattice L. We denote
that ϕ is valid by � ϕ.

We will denote any valid formula by >, and any invalid formula by ⊥. A
formula is invalid if it is not valid in any algebraic realization.

Definition 3.7 (Algebraic consequence relative to A) Let Γ ⊆ For(L) and
A = (L, v) an algebraic realization. A formula ψ is an algebraic consequence
of Γ relative to A, what is denoted by Γ �A ψ, if:

for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then b ≤ v(ψ).

The idea is that v(ψ) must be equal or bigger than the infimum of {v(γ) :
γ ∈ Γ}. If Γ = {γ1, . . . , γn}, then Γ � ψ ⇔ v(γ1) f . . . f v(γn) ≤ v(ψ) and, in
particular, {γ} �A ψ ⇐⇒ v(γ) ≤ v(ψ).

It is usual to define a similar consequence in the following way: [∗] If Γ∪{ψ}
is a set of formulas, then Γ implies ψ in the model A, if vA(γ) = 1, for every
γ ∈ Γ, then vA(ψ) = 1.

The above definition implies this condition [∗], but they are not equivalent.
If we have some A in which 0 < vA(ψ) < vA(γ) < 1, then, in accordance

to [∗] we have {γ} � ψ, but it does not happen following the above definition
of consequence.

The definition is perfect for the characterization of ortholattices.

Definition 3.8 (Logical Consequence) A formula ψ is a logical consequence of
Γ, or Γ implies ψ, what is denoted by Γ � ψ, if for any algebraic realization A,
Γ �A ψ.

Now we can prove the Soundness Theorem.

Theorem 3.9 If Γ ⊆ For(L), then Γ ` γ ⇒ Γ � γ.
Proof. We need to show that each rule of OL preserves the validity.

Let A = (L, v) be any algebraic realization. Then L is an ortholattice and
each rule of OL is valid because:

(ROL1): v(ϕ) = v(ϕ).
(ROL2) and (0ROL3): v(ϕ) = v(¬¬ϕ).
(ROL4) and (0ROL5): v(ϕ ∧ ψ) = v(ϕ)f v(ψ) ≤ v(ϕ), v(ψ).
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(ROL6): v(ϕ ∧ ¬ϕ) = v(ϕ)f v(ϕ)′ = 0 ≤ v(σ), for any σ.

(ROL7): Γ � ψ, then for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then
b ≤ v(ψ). Now, if we take Γ∪Σ, the values of Σ do not invalidate the condition,
because they may only vary with lower values. Hence Γ ∪ Σ � ψ.

(ROL8): {ϕ} � ψ ⇔ v(ϕ) ≤ v(ψ)⇔ v(ψ)′ ≤ v(ϕ)′ ⇔ {¬ψ} � ¬ϕ.
(ROL9): {ϕ,ψ} � σ ⇔ v(ϕ)fv(ψ) ≤ v(σ)⇔ v(ϕ∧ψ) ≤ v(σ)⇔ {ϕ∧ψ} �

σ.

(ROL10): if Γ � ϕ and Σ ∪ {ϕ} � ψ, then then for any b ∈ L, if b ≤ v(γ)
for every γ ∈ Γ then b ≤ v(ϕ), and then for any b ∈ L, if b ≤ v(σ) for every
σ ∈ Γ∪{ϕ} then b ≤ v(ψ). Thus, for any b ∈ L, if b ≤ v(δ) for every δ ∈ Γ∪Σ
then b ≤ v(ψ), that is, Γ ∪ Σ � ψ.

(ROL11): if {ψ} � ϕ and {ψ} � ¬ϕ, then v(ψ) ≤ v(ϕ) and v(ψ) ≤ v(¬ϕ),
so v(ψ) ≤ v(ϕ)f v(ϕ)′ = 0 and v(ψ) = 0. Thus v(¬ψ) = 1 e hence � ¬ψ.

(ROL12): if Γ � ϕ and Γ � ψ, then for any b ∈ L, if b ≤ v(γ) for every
γ ∈ Γ then b ≤ v(ϕ), and for any b ∈ L, if b ≤ v(γ) for every γ ∈ Γ, then
b ≤ v(ψ). As v(ϕ ∧ ψ) = v(ϕ)f v(ψ), then for any b ∈ L, if b ≤ v(γ) for every
γ ∈ Γ, then b ≤ v(ϕ ∧ ψ), that is, Γ � ϕ ∧ ψ. �

4 Completeness

Now we need to show that the set of logical consequences and derivable
formulas are the same.

The proof of completeness for this logic was generally done using some
Kripke model, as we can see for example in ([9], p. 26) and ([6], p. 181). Our
proof below has a specifically algebraic character. Pavičić, [16] also presents
an algebraic proof though less general than the following.

Definition 4.1 (Full set) A set of formulas ∆ is full if it is non-empty, con-
sistent and holds:

(i) if ϕ ∈ ∆ and {ϕ} ` ψ, then ψ ∈ ∆;
(ii) if ϕ,ψ ∈ ∆, then ϕ ∧ ψ ∈ ∆.

Proposition 4.2 If ∆ is full, then:
(a) ϕ,ψ ∈ ∆⇔ ϕ ∧ ψ ∈ ∆;
(b) ∆ ` ϕ⇔ ϕ ∈ ∆;
(c) > ∈ ∆.

Proof. (a) If ϕ ∧ ψ ∈ ∆, as {ϕ ∧ ψ} ` ϕ and {ϕ ∧ ψ} ` ψ, then by item (i)
above ϕ,ψ ∈ ∆.
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(b) If ∆ ` ϕ, by Corollary 2.7, there are ψ1, . . . , ψn ∈ ∆ such that {ψ1 ∧
. . . ∧ ψn} ` ϕ and, by (a), ψ1 ∧ . . . ∧ ψn ∈ ∆. So ϕ ∈ ∆.

If ϕ ∈ ∆, by example (d) ∆ ` ϕ.
(c) As for any ∆, ∆ ` >, then, by (b), > ∈ ∆. �

From item (b), we observe that any full set is a theory.

Proposition 4.3 If ∆1 and ∆2 are full, then ∆1 ∩∆2 is full.
Proof. If ∆1 and ∆2 are consistent, then ∆1 ∩∆2 is consistent.

If ϕ ∈ ∆1 ∩ ∆2 and {ϕ} ` ψ, then ϕ ∈ ∆1 and {ϕ} ` ψ, e ϕ ∈ ∆2 and
{ϕ} ` ψ. As ∆1 and ∆2 are full, then ψ ∈ ∆1 and ψ ∈ ∆2. Hence ψ ∈ ∆1∩∆2.

If ϕ,ψ ∈ ∆1 ∩∆2, then ϕ,ψ ∈ ∆1 and ϕ,ψ ∈ ∆2. As ∆1 and ∆2 are full,
then ϕ ∧ ψ ∈ ∆1 and ϕ ∧ ψ ∈ ∆2. Finally, ϕ ∧ ψ ∈ ∆1 ∩∆2. �

Proposition 4.4 Γ ` ϕ ⇐⇒ ϕ belongs to every full extension of Γ.
Proof. (⇒) Suppose that Γ ` ϕ and ∆ is a full extension of Γ. Then, by
Corollary 2.7, there are ϕ1, . . . , ϕn ∈ Γ ⊆ ∆ such that {ϕ1 ∧ . . . ∧ ϕn} ` ϕ.
Moreover, by Definition 4.1 (ii) and (i), ϕ1 ∧ . . . ∧ ϕn ∈ ∆ and hence ϕ ∈ ∆.

(⇐) By contrapositive, suppose that Γ is consistent and Γ 0 ϕ.
Thus ϕ /∈ Γ and, of course, Γ ⊆ Γ. So, we show that Γ is full.
Since Γ is consistent, then Γ is consistent and Γ 6= ∅.
Now:
(i) suppose ψ ∈ Γ and {ψ} ` δ. Then Γ ` ψ and {ψ} ` δ and so, by

example (b), Γ ` δ and hence δ ∈ Γ.
(ii) if ψ, δ ∈ Γ, then there are ψ1 ∧ . . . ∧ ψn, δ1 ∧ . . . ∧ δm ∈ Γ such that

{ψ1 ∧ . . . ∧ ψn} ` ψ and {δ1 ∧ . . . ∧ δm} ` δ. Thus, by monotonicity and right
conjunction, {ψ1 ∧ . . . ∧ ψn ∧ δ1 ∧ . . . ∧ δm} ` ψ ∧ δ. Therefore, Γ ` ψ ∧ δ and
ψ ∧ δ ∈ Γ.

Hence Γ is full. �

Definition 4.5 (Compatible sets) The sets ∆ and Λ are compatible if there is
no formula ψ such that ∆ ` ψ and Λ ` ¬ψ.

The next result is more properly an observation.

Proposition 4.6 If ∆ and Λ are compatible, then for every formula ψ, if
∆ ` ψ, then Λ 0 ¬ψ.
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Theorem 4.7 If ∆ 0 ¬ϕ, then there exists Λ compatible with ∆ such that
Λ ` ϕ.
Proof. Suppose that ∆ 0 ¬ϕ. If Λ = {ϕ}, by autodeductibility, Λ ` ϕ and
∆ and Λ are compatible, for on the contrary there is some formula σ such that
∆ ` ¬σ and Λ ` σ. Then {ϕ} ` σ and by contraposition {¬σ} ` ¬ϕ. As
∆ ` ¬σ, by cut, ∆ ` ¬ϕ. �

Theorem 4.8 Every consistent set Γ is included in a full set Λ.
Proof. We take an enumeration ψ0, ψ1, ψ2, . . . of For(L) and construct a
sequence of sets Λi, i ∈ N, of compatible sets as in the previous theorem in the
following way.

In the first step Λ0 = Γ. So, if Λn ` ¬ψn, then Λn+1 = Λn ∪ {¬ψn} and
if Λn 0 ¬ψn, then Λn+1 = Λn ∪ {ψn}. Thus, each set Λn is compatible with
every previous set in the sequence and, by definition of compatible sets, they
are consistent.

Finally, we take Λ = ∪Λi, i ∈ N. This set is full, compatible with Γ and
Γ ⊆ Λ. �

Now we must construct a canonical algebraic realization for OL. Its do-
main is the set T of all full theories of OL.

On T we need to determine a structure of an ortholattice.

Definition 4.9 (Structure of full sets) For ϕ,ψ ∈ For(L), we define .̂ :
For(L)→ P(T):

(i) ϕ̂ = {∆ ∈ T : ∆ ` ϕ}
(ii) ⊥̂ = ∅
(iii) >̂ = T
(iv) ϕ̂f ψ̂ = ϕ̂ ∩ ψ̂
(v) ϕ̂ ′ = {∆ ∈ T : ∆ is incompatible with ϕ̂}.

Of course, for every ∆ ∈ T, ⊥ /∈ ∆. On the other side, > belongs to all
full sets. The conjunction coincides with set intersection, but the negation
is not the set complement, because we would have a Boolean algebra with
the classical negation. The classical complementation is a particular case of
ortholattice complementation, however the quantum negation is weaker than
the classical one.

Lemma 4.10 {ϕ} ` ψ ⇔ ϕ̂ ⊆ ψ̂.
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Proof. (⇒) If ∆ ∈ ϕ̂, then ∆ ` ϕ. Since {ϕ} ` ψ, then ∆ ` ψ and hence
∆ ∈ ψ̂.

(⇐) If {ϕ} 0 ψ, then there exists ∆ ∈ T such that ∆ ` ϕ and ∆ 0 ψ.
Thus, ∆ ∈ ϕ̂, but ∆ /∈ ψ̂. So ϕ̂ * ψ̂. �

Now we need to prove the following important result.

Proposition 4.11 The structure 〈T,⊆, ′,f, ⊥̂〉 is an ortholattice.
Proof. As the relation ` is reflexive, transitive and antisymmetric, from the
previous lemma, it follows that the relation ⊆ is a partial order on T. Besides,
⊥̂ and >̂ are the 0 and 1 on T.

Then 〈T,⊆, ′,f, ⊥̂〉 is a complemented partial order with 0 and 1, because:

(i) ψ̂ f ¬̂ψ = ⊥̂ and (ii) ψ̂ g ¬̂ψ = >̂.

(i) ⊥̂ = ∅ ⊆ ψ̂ ∩ ¬̂ψ = ψ̂ f ¬̂ψ. And ∆ ∈ ψ̂ f ¬̂ψ ⇒ ∆ ∈ ψ̂ and ∆ ∈ ¬̂ψ ⇒
∆ ` ψ and ∆ ` ¬ψ ⇒ ∆ ` ⊥. So ψ̂ f ¬̂ψ ⊆ ⊥̂.

(ii) >̂ ⊆ ψ̂ and >̂ ⊆ ¬̂ψ ⇒ >̂ ⊆ ψ̂ g ¬̂ψ = ψ̂ g ψ̂ ′. And ∆ ∈ ψ̂ g ¬̂ψ ⇒
∆ ∈ ψ̂ or ∆ ∈ ¬̂ψ ⇒ ∆ ` ψ or ∆ ` ¬ψ ⇒ ∆ ` ψ ∨¬ψ ⇒ ∆ ` > ⇔ ∆ ∈ >̂. So
ψ̂ g ¬̂ψ ⊆ >̂.

Now we need to show that ′ is an involution.
(iii) Suppose that ϕ̂ 6= ϕ̂ ′ ′. Thus either there is ∆1 ∈ T such that

∆1 ` ¬¬ϕ but ∆1 0 ϕ, or there is ∆2 ∈ T such that ∆2 ` ϕ but ∆2 0 ¬¬ϕ.
We shall analyse only one case. As ∆2 is full and {ϕ} ` ¬¬ϕ, then ∆2 ` ¬¬ϕ.
In any case we have a contradiction.

(iv) By Lemma 5.10, ϕ̂ ⊆ ψ̂ ⇔ {ϕ} ` ψ and, by Contraposition, {ϕ} `
ψ ⇔ {¬ψ} ` ¬ϕ. Again by lemma ϕ̂ ⊆ ψ̂ ⇔ ¬̂ψ ⊆ ¬̂ϕ⇔ ψ̂ ′ ⊆ ϕ̂ ′. �

Definition 4.12 (Canonical valuation) A canonical valuation is any valuation
[.] : For(L)→ P(T ) such that:

(i) [p] := {∆ ∈ T : p ∈ ∆} = p̂.

Proposition 4.13 For every ϕ ∈ For(L), it follows that [ϕ] = ϕ̂.
Proof. By induction on the complexity of ϕ.

If ϕ is a propositional variable, then [p] = p̂, by the above definition.
If ϕ is of the type ¬ψ, then by induction hypotheses, [ψ] = ψ̂. So [ϕ] =

[¬ψ] = [ψ]′ = ψ̂ ′ = {∆ ∈ T : ∆ is incompatible with ψ̂} = {∆ ∈ T : ∆ `
¬ψ} = ¬̂ψ = ϕ̂.

If ϕ is of the type ψ∧σ, then by induction hypotheses, [ψ] = ψ̂ and [σ] = σ̂.
So [ϕ] = [ψ ∧ σ] = [ψ]f [σ] = ψ̂ ∩ σ̂ = ϕ̂. �
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Theorem 4.14 (Strong completeness) If Γ � ψ, then Γ ` ψ.
Proof. If Γ 0 ψ, then Γ ∪ {¬ψ} is consistent. By Theorem 4.8, there exists
a full set Λ such that Γ ∪ {¬ψ} ⊆ Λ. As Λ is full and ¬ψ ∈ Λ, then Λ ` ¬ψ
and so Λ ∈ ¬̂ψ. Thus Λ � ¬ψ. As Λ is full, then Λ 2 ψ and considering that
Γ ⊆ Λ, then Γ 2 ψ. �

In this view the compactness is very simple.

Corollary 4.15 (Compactness) If every finite Γf ⊆ Γ has a model, then Γ
has a model.
Proof. If Γ does not have a model, then for every ∆ ∈ T, it follows that
Γ * ∆. By Theorem 4.8, Γ is inconsistent. Hence, there is a formula ψ such
that Γ ` ψ and Γ ` ¬ψ, that is, there is a finite set Γf ⊆ Γ such that Γf ` ψ
and Γf ` ¬ψ. Thus, the set Γf does not have a model. �

5 Final remarks

We presented the ortholattices and a proof of adequacy between the algebraic
ortholattices and the logic of ortholattices OL using only algebraic tools.

In the next steps we will try to include a conditional in OL and consider
some specifications of ortholattices given by the introduction of new algebraic
axioms. Of course, we must observe how the logical systems follow the algebraic
inclusions.
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