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Abstract

I examine claims of numerical existence for the intuitionistic disjunc-
tion and existential quantifier. I argue that those claims do not secure
numerical content and that a polynomial translation of logical constants
comes closer to a numerical language for mathematics in the framework
of a “contentual” or internal logic of arithmetic.
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Introduction

Intuitionistic logic and intuitionistic number theory have the disjunction prop-
erty and the numerical existence property. The question is to what extent these
properties imply a notion of numerical content. The objective of this paper is
to evaluate the claims about the realizability conditions of numerical existence
and offer an alternative to intuitionistic logic and number theory in terms of a
modular polynomial logic exhibiting a direct translation of logical formulas into
an arithmetical logic internal to classical arithmetic. The term classical arith-
metic is meant here to be contrasted to the set-theoretical Dedekind-Peano
arithmetic formalized as Peano Arithmetic (PA). Classical arithmetic is desig-
nated as Fermat-Kronecker (F-K) arithmetic for classical number theory from
Fermat to Gauss, and Kummer and Kronecker and beyond (see Gauthier [5]).
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1 The disjunction and numerical existence proper-
ties.

The disjunction and numerical existence properties are easy to formulate. For
a disjunction A ∨ B intuitionistic logic requires that one of the disjuncts be
true or provable and for an existential quantifier ∃xAx, it requires to exhibit
a term t free for x in A[x/t] denoting an instantiating element or object not
otherwise specified in the BHK (Brouwer-Heyting-Kolmogorov) interpretation
of intuitionistic logic. S.C. Kleene ([11], [12]) had the idea of calling such an
object a realizer, an arbitrary witness or numerical instance in a given coding
system. Kleene’s realizability interpretation of intuitionistic logic adjoins a
number n to a realizer such that the disjunction A ∨ B needs a pair (n,m)
with values in 0, 1 (for 0 = F and 1 = T ) with the proviso that if n = 0, then
m realizes A and if n = 1, then m realizes B); for the existential quantifier,
∃xAx is realized by a pair (n,m), iff m is a realizer for A(n).

The general setting of Kleene’s realizability is the theory of partial recursive
functions with recursive enumerability for which a partial recursive function is
recursively realizable , iff some natural number n realizes it. This amounts to
recursive enumerability for realized formulas in intuitionistic logic. For exam-
ple, ∃xAx is proven, iff there is proof of Ax for some numeral x as in Gödel
numbering. G. Kreisel has introduced a modified realizability interpretation,
a typed variant with continuous functionals with the specific aim of reintro-
ducing the notion of proof for a realized formula. H. Friedman ([3]) has shown
in line with Kleene’s work that realizability conditions allow to derive the nu-
merical existence property in the set of axioms of a recursively enumerable
extension T of Peano arithmetic where for the intuitionistic disjunction A∨B,
either A is a consequence of T or B is a consequence of T; for the existen-
tial quantifier, the numerical existence property stipulates that for each closed
consequence ∃x(Con(x)) of T where x is a numerical variable, there is natural
number n such that Con(ñ) is a consequence of T. All this is done within Peano
arithmetic (extensions and fragments or substructures included) with the usual
resources of recursive enumerability and set-theoretic machinery. However the
realizability notion is not expressible in intuitionistic arithmetic HAω since it
involves all recursive (partial) functions or functionals (of finite type). The
situation is similar to the first number class in Cantorian set-theory for the
sequence of natural numbers where the final segment (0, ω) is not expressible
as an isomorphism type for its order type is incomparable or irreducible to
any n in the ordinal polynomial of Cantor’s normal form (see Gauthier [7]).
All this means that the numerical existence property is not enough to produce
numerical content, simply because logic is not arithmetic and that general com-
putable functions do not generate feasible arithmetic or polynomial arithmetic
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the results of which can be computed in polynomial time. Here one should
add that numerical witnesses are not arbitrary in a polynomial modular set-
ting, since they are enumerated by a finite segment of an unlimited sequence
of natural numbers in N, of integers in Z or in finite fields Q as André Weil
has taught us. As it is the case for modular arithmetic, Euclid’s algorithm
can act on modular logic for the elimination of logical constants and Fermat’s
infinite descent can be used to eliminate quantifiers in the translation of logic
into arithmetic – e.g. by a calculus on binomial coefficients corresponding to
a logical formula in propositional logic and decidable first-order monadic logic
– . See Gauthier (5) and (6).

2 The notion of numerical content.

E. Bishop ([1]) has advocated the idea of mathematics as a numerical language.
Here the author of the classic Foundations of Constructive Analysis deplores
the fact that intuitionistic logic and mathematics are not constructive enough
and a strict numerical interpretation of implication is needed simply because
the usual

A→ B

amounts simply to the data of a proof of A → B effected by a construction
which outputs a proof of A into a proof of B plus a proof of the said transforma-
tion wanting of any constructive information. It seems that Bishop was aiming
at an existential instantiation for implication, but has been unable to pro-
vide with the right formulation and resorted finally to an appeal to Kronecker
whom he considered closer to his foundational standpoint than was Brouwer.
The proof-theorist U. Kohlenbach ([13]) claims that Gödel’s functional inter-
pretation of intuitionistic logic in Gödel ([8]) comes close to numerical content
by the employment of primitive recursive functionals of finite type. Kohlenbach
acknowledges though that the notion was already present in Hilbert’s paper
(Hilbert [10]), but he doesn’t go back to Kronecker. I have shown that Hilbert
was certainly inspired by Kronecker’s own construction in (Kronecker [14]) and
I have given the details of such a construction in (Gauthier [5], chap. 4).

3 Local negation.

Negation is interpreted “negatively” in intuitionistic logic as Bishop would say:

¬A ≡ A→ 0 = 1(absurdity)
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and here he would lament the lack of numerical content. Gödel’s interpretation
in (Gödel [8]) comes to the same when he writes

¬ p ≡ p ⊃ 0 · 1.

The Dialectica interpretation can have a direct polynomial interpretation (see
Gauthier [5], chap. 7.9) and negation could be defined as 1- a on the pattern
of relative complementation

a→ b = In ((X − a) ∪ b)

for a topological space X, its Interior of open sets and b. Now, one can translate
this in a combinatorial formula

a→ b = C ((2n − a) + b)

where C stands for combinations of integer coefficients a, b of the polynomial
(a0x + b0x)n with a0x standing for 2n − a (2n is here the finite arithmetical
universe as the power set of n integers). See below section 5 for more details
on this construction.

The minus sign also appears in Y. Gurevich’s treatment (Gurevich [9])
of Nelson’s constructible falsity (Nelson [15]) which is expressed in terms of
Kleene’s realizability notion

¬A ⊃ 1 = 0.

For Gurevich’s minus sign, one has

— (A ⊃ B) ≡ A ∧ −B

— ¬(A) ≡ A

— A ⊃ ¬A

and a deduction theorem stating

— A ⊃ A ⊃ B.

Local negation in (Gauthier [4]) could be seen as a still stronger notion, the
minus sign in a congruence relation being arithmetical while Gurevich’s strong
negation is logical and set in a Kripke model for Nelson’s notion of constructible
falsity couched in Kleene’s recursive realizability style. There again numerical
content is only postulated under an apriori numerical existence property. I
present in the following a scheme inspired by Kronecker’s theory of forms,
his divisor theory for homogeneous polynomials. Such a scheme is intended
to procure a direct access to numerical content in an arithmetical (modular
polynomial) logic as the internal logic of arithmetic.
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4 Modular polynomial logic.

For the Kroneckerian background of modular polynomial, I summarize the
polynomial translation of logical constants inspired by Kronecker’s general
arithmetic (allgemeine Arithmetik). See Kronecker (15) and Gauthier (6).

There are various ways to translate a formal system into the natural num-
bers, simple substitution of numerical variables as in Ackermann (1940), trans-
lation of logical into arithmetical operations as in Goodstein’s equational calcu-
lus (1951). In view of our use of Kronecker’s results, we choose the polynomial
translation. We are going to need some facts about the ring of polynomials in
one indeterminate in our consistency proof. We pass briefly over the prelimi-
naries (the graded ring of two or more polynomials has the same convolution
product, which is our main tool- a Grassmannian product could be used to the
same effect).

Polynomials of the form

f = f0 + f1x+ f2x
2 + . . .+ fnx

n

where the f . are the coefficients with the indeterminate x build up the subring
K[x] of the ring K[[x]] of formal power series. The degree of a polynomial is
the degree of the last non-zero coefficient k = n, while the leading coefficient of
a polynomial f of degree k is the constant fk and f is called monic if its leading
coefficient is 1. Thus polynomials are power series having only a finite number
of non-zero coefficients. The involution or Cauchy product of two polynomials
will play an important role in our translation; we write it

f · g =

(∑
m

fmx
m

)(∑
n

gnx
n

)
=

(∑
m

∑
n

fmgnx
m+n

)
.

The sum f + g of polynomials f and g is obtained by simply adding corre-
sponding coefficients. Homogeneous polynomials have all their non-zero terms
of the same degree and they can be put in the following convenient form

aox
m + a1x

m−1y + . . .+ amy.

We are interested in irreducible ( = prime in K[x]) polynomials. Every
linear polynomial is irreducible. K[x] has the property of unique factorization
and this fact will be crucial in our future developments1.

1Kronecker had proven the unique factorization theorem in the following formulation:
� Every integral algebraic form(= polynomial) is representable as a product of irreducible
(prime) forms in a unique way�(see Kronecker 1882, p. 352). Kronecker is interested in the
theory of divisibility for forms and considers primitive forms (forms with no common divisor
greater than 1 ), rather than prime polynomials in his work. The notions of integral domain
and unique factorization domain are direct descendants to that theorem.
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4.1 The inner arithmetical model

When we write, for example,

ϕm(∃xAx)[n+m+ ` . . .] = 1, iff
∑

An ∈ Dm

we can drop the right part and write

ϕm(∃xAx)[n+m+ ` . . .] =< n+m+ ` . . . >= 1

to mean that we have a complementary mapping (of the intuitionistic spread)
ξ : N→ N, so that we really have a polynomial function which evaluates poly-
nomials by sequences of natural numbers after having defined an evaluation
map of formulas into polynomials. The whole process is made possible by sub-
stitution alone. Moreover, in category-theoretic language, the indeterminate x
is a universal element for the functor U(ϕ(x)) = n for an integer n. If we look
at variables of logical formulas as indeterminates, then any number of variables
may be reduced to one.

We are going to make an essential use of Kronecker’s notion of the content
of forms in (1882, p. 343). A form M is contained in another form M ′ when the
coefficients of the first are convoluted (combined in a Cauchy product) in the
coefficients of the second. This idea of a content <Enthalten-Sein> of forms
can be summarized in the phrase �The content of the product is the product
of the contents (of each form)� which can be extracted from Kronecker’s paper
(1968, ll, 419-424). Thus, for a form to be contained or included in another
form is simply to be linearly combined with it (to have its powers convoluted
with the powers of the second form). We can adopt here a general principle
of substitution - elimination formulated by Kronecker (1882). We state the
Substitution Principle:

1) Two homogeneous forms (polynomials) F and F ′ are equivalent
if they have the same coefficients (i.e. content);

2) Forms can be substituted for indeterminates (variables) provided
the (linear) substitution is performed with integer coefficients.

We have immediately the following Proposition 1 (proposition X in Kronecker):

Linear homogeneous forms that are equivalent can be transformed
into one another through substitution with integer coefficients2.

2This can be seen as the precursor of the problem of quantification over empty domains.
We know that we have MP

A,A ⊃ B

B
in an empty domain, provided that A and B have the same free variables. But Kronecker
had a more general theory of inclusion or content of forms in mind and the transformation in
question is a composition of contents, an internal constitution of polynomials (forms) where
indeterminates are not the usual functional variables.
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We have also the following Proposition 2 (proposition X0 in Kronecker):

Two forms F and F ′ are absolutely equivalent, if they can be trans-
formed into one another.

These propositions can be considered as lemmas for the unique factorization
theorem for forms which Kronecker considered as one of his main results. The
substitution procedure is simultaneously an elimination procedure, since in-
determinates <Unbestimmte> are replaced by integer coefficients. Thus an
indefinite (or effinite) supply of variables can be made available to a formal
system and then reduced by the substitution-elimination method to an in-
finitely descending or finite sequence of natural numbers, as will be shown in
the following. The equivalence principle makes it possible to have a direct
translation between forms (polynomials) and (logical) formulas.

The substitution process takes place inside arithmetic, from within the
Galois field F ∗, i.e. the minimal, natural or ground field of polynomials which
is the proper arena of the translation and indeterminates - Kronecker credits
Gauss for the introduction of <indeterminatae> - are the appropriate tools for
the mapping of formulas into the natural numbers. The important idea is that
indeterminates in Kronecker’s sense can be freely adjoined and discharged and
although Kronecker did not always suppose that his forms were homogeneous,
we restrict ourselves to homogeneous polynomials.
Definition : The height of a polynomial is the maximum of its lengths (number
of its components or terms) -the height of a polynomial is indicated by a lower
index. Let us rewrite the eight clauses of 2 in the polynomial fashion of the
valuation map ϕ̂.
Clause 1) An atomic formula A can be polynomially translated as

ϕ̂(A)[n] = (aox)

(where the a0 part is called the determinate and the x part the indeterminate
and ϕ̂ is the polynomial valuation function or map). Here the coefficient (ao)
corresponds to a given natural number (the “valuator”) and 0 indicates that
it is the first member of a sequence, x being its associate indeterminate. The
polynomial ((aox)) is thus a combination of the two polynomials (1,0,0,0 . . . )
and (0,1,0,0 . . . ). We identify polynomials by their first coefficients.
Clause 2) The negation of an atomic formula, that is ¬A , is translated as

ϕ̂(¬A)[n] = (1− a0x)

Clause 3) The conjunction A and B is translated as ϕ̂(A ∧ B)(n x m) =
(a0x)·(b0x) for the product of monomials (a0x) and (b0x).
Clause 4) The disjunction A or B is rendered by

(A ∨B)(n+m) = (a0x+ b0x).
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Clause 5) Local implication A → B is rendered by ϕ̂(A → B)(mn) = (ā0x +
b0x)n for ā0x = 1− a0x.
Remarks : How is implication to be interpreted polynomially? A developed
product of polynomials has the form

a · b =

(∑
i

aix
i

)(∑
j

bjx
j

)
=

(∑
i

∑
j

aibjx
i+j

)
.

For ab we could simply write (a+ b)n for the binomial coefficients and put

(a0x+ b0x)n = axo = nan+1xbx+ [n(n− 1)/2!]an−22 x2b2x
2 + . . .+ bx0x

n

in short
(a0x+ b0x)ni<n =

∑
i+j=n

(i+ j)aibjxn.

The rationale for our translation is that we want to express the notion of
inclusion of a in b by intertwining or combining their coefficients in a ”crossed”
product, the sum of which is 2n which is also the sum of combinations of n
different objects taken r at a time

n∑
r=0

Cnr .

Linear combination of coefficients is of course of central importance in Kro-
necker’s view and one of his fundamental results is stated: �Any integral func-
tion of a variable can be represented as a product of linear factors� (1968, II,
209-247). In his (1968, III, 147-208), Kronecker refers to Gauss’s concept of
congruence and shows that a modular system with infinite (indeterminate) el-
ements can be reduced to a system with finite elements. This is clearly the
origin of Hilbert’s basis theorem (1965, III, 199-257) on the finite number of
forms in any system of forms with

F = A1F1 +A2F2 + . . .+AmFm

for definite forms F1, F2, . . . , Fm of the system and arbitrary forms A1, A2, . . . ,
Am with variables (indeterminates) belonging to a given field or domain of
rationality <Rationalitätsbereich>. The fact that exponentiation is not com-
mutative is indicated by the inclusion a ⊂ b. The combinatorial nature of
implication is made more explicit in polynomial expansion and is strengthened
by the symplectic (interlacing) features of local inclusion of content. We may
also define implication, in analogy with the relative complement, as

(1N − a0x) + b0x
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where 1N is the arithmetic universe polynomially expanded.
Clause 6) ϕ̂(∃xAx)[m+ n+ ` . . .] =

∑
0(a0x+ b0x+ c0x . . .)i<n where

∑
is an

iterated sum of numerical instances with a0 as the first member of the sequence.
Clause 7) ϕ̂(∀xAx)[n×m× . . .× `] =

∏
0(a0xb0xc0x)i<n.

Clause 8) ϕ̂(>±xAx)[n + m + ` . . .] =
∏

0(a0x + b0x + c0x . . .)n for the effinite
quantifier.
Remarks : The effinite quantifier calls for some clarification. While the classical
universal quantifier stands here for finite sets only, the effinite quantifier is
meant to apply to infinitely proceeding sequences or effinite sequences. These
are not sets and do not have a post-positional bound; we put an n to such
sequences and a 2n to sequences of such sequences

0, 1, 2, . . . , n, . . . , 2n

with the understanding that n signifies an arbitrary bound. It should be
pointed out that Boole in his Mathematical Analysis of Logic (1847) had also
a universe (of classes) denoted by 1; negation was interpreted as 1 − x . The
fact that the ring K[x] of polynomials enjoys the unique factorization property
exhibited by infinite descent coupled with the proof by infinite descent of the
infinity of primes makes essential use, from our point of view, of the effinite
quantifier. We then have a combinatorial formulation

n∏
0

(a0xb0xc0x . . . nnx
n)

for the effinite quantifier; since n! =
∏
c<n c , the combinations of n. I call this

scheme the absolute or standard scale. Any other scale is an associate scale (of
indeterminates) and it is reducible by substitution to the standard scale.
As a foundational precept, there is no ω. Any transnatural or transarithmetic
(transfinite, in Cantorian terminology) ordinal scale, e.g. up to ε0 , is an as-
sociate scale and is by definition reducible. It is clear, from a Kroneckerian
point of view, that Cantor’s transfinite arithmetic becomes a dispensable asso-
ciate (with an indeterminate pay-off!). The arithmetic universe n is naturally
bounded by 2n and not by 2ℵ0 for infinite power series!

4.2 The consistency proof

Gentzen’s pairing of reduction rules with transfinite inductions in the ε0 seg-
ment may be looked at as an associate scale - the scale of ordinal numbers
associated with every derivation (see Gentzen, 1969). The theorem of trans-
finite induction makes all ordinal numbers ”accessible” by running through
them in an increasing order; the reduction procedure then allows a descent
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according to the decreasing order of the ordinal numbers. In the same spirit,
Takeuti attempts in (1975) a justification of transfinite induction by invoking
the principle : �When all numbers smaller than β are recognized as accessi-
ble, the β is itself accessible�. But instead of strictly increasing sequences of
ordinals βo < β1 < . . . < βε0 , Takeuti introduces directly strictly decreasing
sequences µ > . . . > µ1 > µ0 for µ = lim(ωµn). As I have shown (see Gau-
thier, 1991), these ordinals are not uniformly recessible (over an immediate
predecessor) and cannot count as ordinals in the absolute scale. On the other
side, the associate scale can be reduced by a uniform procedure and can be
entirely dispensed with, in accordance with Kronecker’s general arithmetic.

Ackermann’s consistency proof in (1940) also uses a decreasing sequence of
ordinal indices in order to prove his finiteness result for global substitutions
<Gesamtersetzungen> of fundamental types; his m-sequences are uniformly
(immediately) recessible and the reduction procedure ends after a finite number
of steps. However, despite the fact that his general recursion procedure is also
built in the fashion of infinite descent, Ackermann must refer to the associate
(indeterminate) scale of transfinite ordinals which he then reduces one-to-one
to finite ordinals. But the transfinite ordinals are not immediately recessible
and the upper bound estimate 2α for indices of m-sequences (Ackermann, 1940,
p. 193) has only a relative meaning, since it is not independent of some use
of transfinite induction, as Ackermann admits3. Transfinite induction means
always a detour via an infinite set.

Instead of the ordinal hierarchy of set-theoretic ascendency, I use here the
arithmetic of irreducible polynomials to show the internal consistency of infinite
descent in a direct way.

4.3 The elimination of logical constants

The connectives of negation, disjunction, conjunction are directly eliminable
by translation into the arithmetic interpretation since they can be viewed as
difference, sum and product of polynomials in a finite number of terms (con-
stants and indeterminates or variables). We have then
Proposition 5.3.1 Connectives are eliminable through direct translation in the
polynomial interpretation.
Proof. Rewrite the logical rules as follows for the sequent calculus with Γ

3Gödel’s own consistency proof of arithmetic (The Dialectica interpretation) (1958) makes
use of a general recursion schema (of functionals) over all finite types which is equivalent to
complete induction. Herbrand’s proof (1931) also requires general recursive functions. It
is my contention that the concept of recursion stems from arithmetic reduction (recursion)
procedures originating with Dedekind, but mainly from Kronecker’s more algorithmic general
arithmetic. Recursion is also ”récurrence” which in France was another name for infinite
descent.
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the antecedent and ∆ the (single) consequent, both consisting of polynomials
(monomials); we write for negation

(Γ · a0x) ·∆
Γ · ((1− a0x) + ∆)

Γ · (a0x+ ∆)

(Γ · ((1− a0x) ·∆

with ∆ empty i.e. ”without content” in this case, or multiplication by zero
and the understanding that the line has the meaning simply of an ordered
sequence of sequents (consisting of sequences of formulas themselves). It should
be obvious that we have replaced the sign ` by the operation · in order to have
polynomial uniformization which does not alter the meaning of the rules;
for disjunction :

Γ · (a0x+ ∆)

Γ · ((a0xb0x) + ∆)

Γ · (b0x ·∆)

Γ · ((a0xb0x) + ∆)

and also
(Γ · a0x) ·∆ (Γ · b0x) ·∆

(Γ · (a0x+ b0x)) ·∆

for conjunction :

(Γ · a0x) ·∆
(Γ · (a0x+ b0x)) ·∆

(Γ · b0x) ·∆
(Γ · (a0x+ b0x)) ·∆

and also
Γ · (a0x+ ∆) Γ · (b0x+ ∆)

Γ · ((a0x+ b0x) + ∆)

Remarks: We can treat implication as

Γ · a0x+ b0x+ ∆

Γ · ((a0x) + b0x) + ∆

Γ · (a0x+ ∆1) (Γ · b0x) + ∆2

Γ · ((a0x) · b0x) ·∆1 + ∆2

where ∆1, and ∆2 are two different sequences. There is some artificiality in
the symmetrical treatment of intelim rules - the sagittal correspondence - in
natural deduction systems (or in the sequent calculus). The symmetry induced
by the inversion principle is not derived from the content (of symmetric poly-
nomials), but from a formal duality which is not intrinsic or internal. Negation
is generally not involutive- except in finite dual (Boolean) situations- and we
could also introduce non-commuting variables in polynomials or in power se-
ries, while it is precluded by the double (dual) negation. In intuitionistic logic,
this global symmetry is absent and the more complex situations that are re-
flected in the logic are an indication of more genetic, less structural features.
Internal logic is an analysis of content. Here logical content = polynomial
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content. Finally, the detachment or elimination rule is equivalent to Modus
Ponens and the polynomial translation should make manifest the content of
the sequential character of inference. Gentzen’s linear logic –Gentzen used the
phrase ”lineares Räsonieren”- is by itself a surface phenomenon of the polyno-
mial content. The existential quantifier and the universal quantifier over finite
sets interpreted as iterated (finite) sum and iterated (finite) product are also
directly eliminable. We have
Proposition 5.3.2 The existential and universal quantifiers are eliminable through
direct translation in the polynomial interpretation.
Proof. The universal quantifier can be rendered by

Γ · (a0x+ ∆)

Γ · (
∏
i(aix

i) + ∆)
(∗) (Γ · ax) ·∆

(Γ · (
∏
n(anxn)) ·∆)

(∗∗)

where (*) means that x is an indeterminate not appearing in Γ and (* *)
means that x is an arbitrary term in the polynomial. The existential quantifier
is translated as

Γ · (ax+ ∆)

Γ · (
∑

n(anxn) + ∆)
(∗∗) (Γ · ax) ·∆

(Γ · (
∑

i(aix
i)) ·∆

(∗)

Remarks: The terms aix
i are arbitrary. Since we deal with polynomials (with

integer coefficients), the existence property for the existential quantifier is im-
mediately garanteed and since the (classical) universal quantifier is limited to
finite domains, its scope is always well-defined.

4.4 The elimination of implication

We want to arithmetize (local) implication. We put 1−a = ā for local negation.
We have (āox + box)n) and we want to exhaust the content of implication —
in Gentzenian terms, this would correspond to the exhibition of subformulas
(the subformula property). We just expand the binomial by decreasing powers

(āox+ box)n) = ān0x+ nān−1xb0x+ [n(n− 1)/2!]ān−2xb2x+ . . .+ bn0x

where the companion indeterminate x shares the same power expansion. By
an arithmetical calculation (on homogeneous polynomials that are symmetric
i.e. with a symmetric function f(x, y) = f(y, x) of the coefficients)
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(āox+ box)n) = ān0x+
n−1∑
k=1

(n− 1/k − 1)āk−1
0 x+ (n− 1/k)ak0xb

n−k
0 x+ bnox

=
n∑

k=1

(n/k − 1)ak0xb
n−k
0 x+

n−1∑
k=0

(n− 1/k)ak0xb
n−k
0 x

=
n−1∑
k=0

(n− 1/k)ak+1
0 xbn−k

0 x+
n−1∑
k=0

(n− 1/k)ak0xb
n−k
0 x

= ā0
n−1∑
k=0

(n− 1/k)(ā0 − 1)kbn−1−kx+
n−1∑
k=0

(n− 1/k)āk0x(b0 − 1)n−1−kx

= (ā1x+ b1x)(a1x+ b1x− 1)n−1

and continuing by descent and omitting the x’s, we have

(ā2 + b2)(ā2 + b2 − 2)n−2

. . . . . . . . . . . .

(ān−2 + bn−2 + ān−2 +n−2 −(n− 2))(n−(n−2))

(ān−1 + bn−1 + ān−1 +n−1 −(n− 1))(n−(n−1))

(ān + bn)(ān + bn)n−n.

Applying descent again on (ān + bn) ,we obtain

(ā0 + b0)

or, reinstating the x’s
(ā0x+ b0x).

Remembering that

(āx + bx)nk<n =
∑

k+m=n

(k +m/k)ākbmxn

we have
(āx + bx)n+m=n

k<n =
∏

k+m=n

(k,m) = 2n

or more explicitly

m+n∑
i=0

c1x
m+n=1 = ā0x · b0x

m+n∏
i=1

(1 + cix) = 2n

where the product is over the coefficients (with indeterminates) of convolution
of the two polynomials (monomials) a0 and b0. We could of course calculate
the generalized formula for polynomials

(a0x+ b0x+ c0x+ . . .+ k0x)n =
∑

p,q,r...s

apbqcr . . . ks
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in the same manner, but we shall postpone the general case till we come to the
effinite quantifier for a unified treatment.

The combinatorial content of the polynomial is expressed by the power
set 2n of the n coefficients of the binomial. I contend that this combinatorial
content expresses also the meaning of local (iterated) implication. Convolution
exhibits the arithmetic connectedness that serves to render the logical relation
of implication. Implication is seen here as a power of polynomials, ak and bm

with k < m having their powers summed up and expanded in the binomial
expansion. Some other formula may be used for the product, but it is essential
to the constructive interpretation that the arithmetic universe be bounded by
2n. One way to make things concrete is to analyse a→ b in terms of

a→ b = C((2n − a) + b)

where C can stand for combinations or coefficients. The formula is an arith-
metical analogue of the topological interpretation of intuitionistic implication.
Theorem 5.4.1 Local implication a→ b can be eliminated by interpreting it as
(ā+ b)n .
Proof. By the above construction.

Here I only want to show how is produced a direct polynomial eliminative
translation of logical constants by rewriting intelim rules of Gentzen’s natu-
ral deduction system into a polynomial language. The unique identity axiom
becomes the equality axiom A = A. There are also intelim rules and a poly-
nomial translation for the effinite quantifier >±xAx as a quantification over an
unlimited sequence of natural numbers.

(I ∧)
A B

A ∧B
; a0x, b0x ≡ a0x · b0x

(E ∧)
A ∧B
A

and
A ∧B
B

; a0x · b0x ≡ a0x, b0x

(I ∨)
A

A ∨B
B

A ∨B
; a0x+ b0x ≡ a0x, a0x+ b0x ≡ b0x
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(E ∨)

A ∨B
[A]
...
C

[B]
...
C

C
;
a0x+ b0x ≡ c0x (mod b0x)
a0x+ b0x ≡ c0x (mod a0x)

(I→)

[A]
...
B

A→ B
; a0x ≡ b0x(mod a0x+ 1)

(E→)
A,A→ B

B
; 1− a0x ≡ b0x(mod a0x)

(I¬)

A
⊥
¬A

; 1− a0x ≡ 1(mod a0x)

(E ¬)
A,¬A
⊥

; 1− a0x ≡ 0(mod a0x)

(I ∀) Ax

∀xAx
;
∏
n

a0x
n ≡ a0x(mod n)

(E ∀) ∀xAx
At

; a0x ≡
∏
n

a0x
n(mod 1)

(I ∃) At

∃xAx
;
∑
n

a0x ≡ a0xn(mod 1)
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(E ∃)

∃xA
[Ax]

...
B

B
; a0x ≡

∑
n

b0x
n(mod 1)

(I >±)
Axn
>±xAx

;
∏
n...

a0x ≡ a0xn(mod n× n)

(E >±)
>±xAx
At0

; a0x ≡
∏
n...

a0x
n(mod 1)

In translating logical formulas into congruent forms, we want to represent logi-
cal constants in a polynomial language in order to integrally arithmetize (poly-
nomialize) logic. It is manifest in that context that deduction expressed in a
turnstile A ` A or A/A is a congruence relation in a modular calculus. Impli-
cation is rewritten

(āox+ box)n

for āox = 1−aox, the local negation (complement) of logic; exponent n denotes
the degree of the polynomial (content) of implication that we reduce in the
following way by a calculus on symmetrical polynomials (forms).
Remark. In structural and substructural logics, the deduction theorem

A,B ` C, iff A ` B → C

is also called residuation in the sense that A is a residue in

A+B = C, iff A = C −B.

In those logics, the linear combinations of the premises are subjected to various
complex rules to handle the residues. But in modular polynomial logic, the
residue A is associated to a positive integer multiple n (An) via a congruence
relation

C ≡ B(mod n)

meaning that C − B is divisible by n, thus adding a direct numerical content
to the notion of residuation. In the first three cases above (I ∧), (E ∧) and (I
∨), we could have added (mod 0) showing that the congruence relation leaves
no residue or remainder, that is

C ≡ B (mod 0) implies C = B.
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Our notion of congruence is arithmetical for modular polynomial arithmetic
with integer coefficients in line with Gauss (who invented the concept) and
Kronecker. The algebraic notion of congruence in structural algebraic logics
does not subsume any numerical content.

5 Final remarks

As I mentioned earlier, it is the Fermat-Kronecker number theory, that is
Kronecker’s polynomial arithmetic with Fermat’s infinite descent, which con-
stitutes the foundational background of my work. Obviously, the foundational
motive is alien to set-theoretical foundations and one could quote H.M. Ed-
wards ([2] p. 97) on numerical extensions:

It is usual in algebraic geometry to consider function fields over an
algebraically closed field – the field of complex numbers or the field
of algebraic numbers rather than over Q (the field of rational num-
bers). In the Kroneckerian approach, the transfinite construction
of algebraically closed fields is avoided by the simple expedient of
adjoining new algebraic numbers to Q as needed.

By transfinite construction, Edwards means clearly the use of set-theoretical
devices like Zorn’s lemma and model-theoretic tools like the ultrafilter lemma
which are equivalent to the axiom of choice de facto absent of Kronecker’s
general arithmetic (allgemeine Arithmetik) of polynomials. Algebraic exten-
sions cannot be constructively defined in general, except in finite fields with
explicit numerical extensions. For example, infinite models of set theory have
elementary (first-order) extensions, e.g. generic sets of Cohen’s forcing relation
(including its Boolean-valued models) which by the way mimicks the method
of field extensions, the accessibility relation on possible worlds in a Kripke
model mimicking in turn a timelike forcing relation. Such set-theoretical and
logical techniques do not have any potential for concrete numerical content
and could be defined as transcendental constructions over infinite sets from a
Kroneckerian point of view. So-called constructive or intuitionistic type the-
ories (as in Martin-Löf’s proposals) claim to do without the excluded middle
principle and the axiom of choice in the construction of types, but as soon as
the finite type territory is trespassed with transfinite induction (and recursion),
excluded middle is reintroduced — as noticed by Kolmogorov already in 1925
(see Gauthier [5], chap. 6.4) — together with some version of the axiom of
choice (e.g. dependent choice). One could add that Peano arithmetic, Heyting
arithmetic with transfinite induction and their subtheories or extensions, such
as Gödel’s Dialectica interpretation with induction on all finite types, could
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not be made to have direct access to numerical content and numerical exten-
sions in virtue of their lack in concrete constructive procedures and elementary
arithmetical operations. The moral of this story may be drawn from Edward
Nelson’s Predicative Arithmetic (p. 177) in his program of arithmetization of
logic. Nelson argues that impredicative arithmetic uses induction and recur-
sion principles which need witnesses of witnesses of witnesses. . . for proofs of
consistency, e.g. Gentzen’s proof with reduction steps coupled by numerals as-
sociated with transfinite ordinals or realizability theories necessitating multiple
numerical witnesses for the same logical formula. The proposal in this paper
is a direct translation of logical constants into modular polynomial arithmetic
with infinite descent replacing an induction postulate. Fermat’s (truly finite)
descent needs only finite natural numbers as direct witnesses as they are the
only testifiers or verifiers of the arithmetical process. My own project for an
arithmetical logic dates back to my paper in 1989 ” Finite Arithmetic with
Infinite Descent” Dialectica, 43(4): 329-337. I had sent a preprint to the great
French arithmetician André Weil who had inspired my work. He responded
that he approved of my use of infinite descent, but he didn’t want to com-
ment on my attempted formalization of infinite descent saying that he was not
enough of a logician ”trop peu logicien” (letter from André Weil, dated March
23, 1988 from Princeton Institute for Advanced Study).

Acknowledgements: I wish to thank an anonymous referee for many useful
suggestions.
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Hensel, ed., Teubner, Leipzig, 1968: 419- 424.
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Grössen, in Werke III, K. Hensel, ed., Teubner. Leipzig, 245- 387.

[16] D. Nelson, Constructible falsity, The Journal of Symbolic Logic, Vol. 14,
no. 1, March 1949:16-26.

[17] E. Nelson, Predicative Arithmetic, Mathematical Notes 32, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

Yvon Gauthier
Faculty of Arts and Sciences
University of Montreal
Montreal, Canada
E-mail: yvon.gauthier@umontreal.ca


