
South American Journal of Logic

Vol. 4, n. 2, pp. 423–440, 2018

ISSN: 2446-6719

On Rings of Fractions of Reduced f-Rings
by Non Zero-Divisors

Francisco Miraglia

Abstract

We present a new and elementary proof of a result of Knebusch and
Zhang, namely that the ring of fractions of an f -ring, A, by a multiplica-
tive set of non zero-divisors in A is an f -ring extension of A. (Corollary
10.13, p. 84 in M. Knebusch, D. Zhang, Convexity, Valuations and Prüfer
Extensions in Real Algebra, Documenta Math. 10 (2005), 1-109.)

The purpose of these notes is to present an elementary proof of Corollary
10.13, p. 84 in [8] for reduced f -rings, namely that the ring of fractions of
such ring, A, by a multiplicative set of non zero-divisors in A is an f -ring
extension of A (cf. Theorem 3.6); in [8] this obtained as a consequence of the
more general Theorem 10.9 (p. 80) for the complete ring of quotients of A, as
define by J. Lambek in [9]. For applications of these results to quadratic form
theory, see, among others, Theorem 8.21 and Corollary 8.23 (pp. 90 ff) in [6].
Moreover, we also give elementary proofs that rings of quotients of weakly real
closed and real closed rings by multiplicative sets of non zero-divisors are again
weakly real closed and real closed, respectively.

Section 1 contains, for the convenience of the reader, some standard and
basic facts on Real Algebra and on preorders of rings, while in section 2 we
introduce and discuss the basic properties of a certain class of preorders having
a cancellation property with respect to non zero-divisors, that will be useful in
section 3.

All notational conventions in [6], indicated by FQR, remain in
force. In particular, all rings are commutative and unitary, wherein
2 is a unit. If A is a ring and B ⊆ A, write B× for the set of units in B; in
particular, A× is the group of units in A.
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1 Preliminaries

We recall some basic facts of Real Algebra that can be found in 6.1 and 7.7 of
FQR.

1.1 Let A be a ring.

a) A preorder on A is a subset T of A, containing the squares (A2) and closed
under addition and multiplication. A preorder T on A is proper if T 6= A;
since 2 ∈ A×, T is proper iff −1 6∈ T . Clearly, ΣA2 (sums of squares) is the
least preorder on A; A is said to be semi-real if −1 6∈ ΣA2. A p-ring is a
pair 〈A, T 〉, with T a preorder on A; henceforth, all p-rings shall be assumed
to be proper; in particular, they are all semi-real, that is, −1 6∈ ΣA2.

b) If T is a preorder on A, the set supp(T ) = T ∩ −T is called the support
of T . T is a partial order if supp T = {0}; in this case, 〈A, T 〉 is a partially
ordered ring (po-ring) and T is a called a ring-po.

c) If 〈A, T 〉 is a p-ring, it is sometimes convenient to write x ≥T y iff x − y ∈
T . Note that for all x, y, z ∈ A

1. x ≥T y ⇒ x + z ≥T y + z; 2. x ≥T y and z ≥T 0 ⇒ xz ≥T yz.
Indeed, we have (x + z) − (y + z) = x − y ∈ T , entailing (1); for (2), the
closure of T under multiplication obtains z(x − y) = xz − zy ∈ T , as needed.

The relations (1) and (2) shall be used below, frequently without explicit men-
tion.

d) If 〈A, T 〉, 〈A′, T ′ 〉 are p-rings, a p-ring morphism is a ring morphism, f
: A −→ A′, such that f [T ] ⊆ T ′; f is an embedding if it is injective and for
all a ∈ A, a ∈ T ⇔ f(a) ∈ T ′ (in this case 〈A′, T ′ 〉 is a p-ring extension of
〈A, T 〉). �

1.2 An ideal I in a p-ring 〈A, T 〉 is

∗ T-convex if for all s, t ∈ T , s + t ∈ I ⇒ s, t ∈ I;

∗ T-radical if for all a ∈ A and t ∈ T , a2 + t ∈ I ⇒ a ∈ I.

A ΣA2-radical ideal is called real.

By Proposition 4.2.5 in [3] an ideal of A is T -radical iff it is T -convex
and radical. In particular, a prime ideal is T -radical iff it is T -convex. �

Proposition 1.3 a) ([3], Prop. 4.2.7, p. 87) A preorder T on a ring A is
proper iff A has a proper T -convex ideal.

b) If T is a preorder of A, any ideal of A, maximal for the property of being
T -convex, is prime. �
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Proposition 1.4 ([3], Prop. 4.2.6, p. 87) Given a preorder T of A, every
ideal I of A is contained in a smallest T -radical ideal (possibly improper),
namely:

T
√
I = {a ∈ A : ∃ m ∈ N and t ∈ T such that a2m + t ∈ I},

called the T -radical of I, the intersection of all T -convex prime ideals con-
taining I. �

Remark 1.5 With notation as in 1.4:

a) If a ∈ A, write
T√
a for the T -radical of the principal ideal (a). In particular,

T
√

0 is the T -radical of the zero ideal. By 1.4, an ideal I is T -radical iff
T
√
I

= I.

b) If T = ΣA2 and I is an ideal in A, we write
re
√
I for

T
√
I, the real radical

of I, equal to the intersection of all real primes of A containing I.

c) A ring A is reduced if it has no non-zero nilpotent element The next
definition describes the analog of the notion of reduced in the case of preordered
rings. �

Definition 1.6 A p-ring 〈A, T 〉 is T -reduced if
T
√

0 = (0). In case T =
ΣA2, i.e.,

re
√

0 = (0), we say that A is a real ring. Clearly, a T -reduced ring
is reduced and semi-real.1

We recall the following

Lemma 1.7 If 〈A, T 〉 is a proper p-ring, then:

a) supp(T ) is a proper ideal in A.

b)
T
√

supp(T ) =
T
√

0. In particular, supp(T ) is contained in all T -convex
prime ideals of A.

c) The following conditions are equivalent:

(1) T is a partial order of A;

(2) The zero ideal is T -convex (1.1).

d) 〈A, T 〉 is T -reduced ⇔ A is reduced and T is partial order of A. In
particular,

(1) A is real ⇔ it is reduced and ΣA2 is a partial order of A.

(2) The following are equivalent:

1 Since
T√

0 = (0) is the intersection of all T -convex prime ideals, the intersection of all
primes in A is (0) (i.e., A is reduced); further, A has a proper real prime ideal and so ΣA2 is
a proper preorder of A (by 1.3.(a)). Moreover, our definition of real ring coincides with the
usual one, i.e. (0) is a real ideal (cf. 1.5.(a)).
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(i) A is Pythagorean (i.e., A2 = ΣA2) and real;

(ii) A is reduced and A2 is a partial order of A.

e) Let S be a proper multiplicative subset of A and let

TS =
{
t

s2 ∈ AS
−1 : t ∈ T and s ∈ S

}
.

Then, TS is a proper preorder of AS−1 iff S ∩ supp(T ) = ∅.
In particular, this holds if T is a partial order, i.e., supp(T ) = {0}.

Proof. a) Clearly, supp(T ) is closed under addition and 1 ∈ supp(T ) iff −1 ∈
T . If t ∈ supp(T ), i.e., t, −t ∈ T and x ∈ A, recalling that 2 ∈ T×, we have

−xt =
−t(1 + x)2 + t(1− x)2

4
∈ T ;

similarly one shows that xt ∈ T , and supp(T ) is indeed an ideal in A.

b) The second assertion in (b) follows from the first assertion and Proposition
1.4. For the former, since taking the T -radical (defined in 1.4) is an increasing
operation on ideals, and (0) ⊆ supp(T ), it suffices to verify

T
√

supp(T ) ⊆
T
√

0. Fix a ∈ A and suppose there is a positive integer k and t ∈ T such that
a2k + t ∈ supp(T ); then, for some s ∈ T , we have a2k + (t + s) = 0; since s
+ t ∈ T , we conclude a ∈ T

√
0, as needed.

c) (1) ⇒ (2) : Assume s + t = 0, with s, t ∈ T ; since T is the positive cone of
a ring-po in A, we have 0 ≤ s ≤ s + t = 0, which implies s = t = 0 and (0) is
T -convex.

(2) ⇒ (1) : Since T is a preorder of A, it will be a ring-po if T ∩ −T = {0}.
If x ∈ T ∩ −T , there is t ∈ T such that −x = t and so x + t = 0. Since (0) is
T -convex, we conclude x = 0, as needed.

d) If A is T -reduced, then A is reduced (cf. 1.6 and its footnote). Moreover,
since (0) =

T
√

0, it follows immediately from (b) that supp(T ) = {0} and T
is a partial order of A. Conversely, by the equivalence in (c), (0) is T -convex
and reducibility implies it to be T -radical, because a2 = 0 entails a = 0. But
then Proposition 1.4 yields

T
√

0 = (0), as needed. The remaining assertions in
(d) are now clear. Item (e) is straightforward, recalling that since 2 ∈ A×, a

preorder P is proper iff −1 6∈ P (e.g., if −1 =
t

s2 , then there is s′ ∈ S so that

s′(−s2 − t) = 0, whence (ss′)2 = −s′2t ∈ supp T ∩ S.) �

1.8 a) Let A be a unitary ring and let N be the proper multiplicative subset
of non zero-divisors in A, i.e.,

N = {a ∈ A : ∀ b ∈ A, ab = 0 ⇒ b = 0}.
b) The set N is saturated (i.e., xy ∈ N ⇔ x, y ∈ N ); moreover, by Exercise
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9, page 44 in [1], N is the largest multiplicative subset of A for which the

canonical ring morphism, ιN : A −→ Q(A) =: AN−1, given by a 7−→ a

1
, is

injective. Note that for a, b ∈ A and x, y ∈ N ,

ax = 0 ⇔ a = 0 and
a

x
=
b

y
⇔ ay = bx.

The ring Q(A) is the total ring of fractions of A.

c) If T is a preorder of A, define

Q(T ) =
{
t

x2 : t ∈ T and x ∈ N
}

.

By 1.7.(e), Q(T ) is a preorder of Q(A), which is proper iff supp T ∩ N = ∅.
�

Remark 1.9 Let A be a ring and let S be a proper multiplicative subset of
A (0 6∈ S and 1 ∈ S). It is well-known that the set

P(S) = {p ⊆ A : p is a proper prime ideal and p ∩ S = ∅}
is non-empty.2 Let Ŝ =

⋂
{A \ p : p ∈ P(S)}. Then, Ŝ is the smallest

saturated (i.e., x, y ∈ Ŝ ⇔ xy ∈ Ŝ ) proper multiplicative set containing
S. Moreover, for all multiplicative sets M satisfying S ⊆ M ⊆ Ŝ , the rings
of fractions AS−1 and AM−1 are naturally isomorphic over A, i.e., there is a
unique ring isomorphism, f , making the following diagram commutative, where
ι• are the canonical maps from A to the respective ring of fractions:

A - AS−1

ιM f

AM−1

ιS

A
A
A
A
AAU

�
�
�
�
���

Hence, we may assume, whenever necessary, that the multiplicative set under
consideration is saturated. �

2 The Weak Cancellation Property. The Weak Can-
cellation Closure of a Preorder

A crucial property in what follows is contained in the following

2 Apply Zorn’s Lemma to the partially ordered set V of ideals that do not meet S; note
that (0) ∈ V. Any maximal element in V is prime and disjoint from S.
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Definition 2.1 A p-ring 〈A, T 〉 has the weak cancellation property (wcp)
(with respect to non zero-divisors) if for all a, b ∈ A,

[canc] ab ∈ T and b ∈ N ∩ T ⇒ a ∈ T .

Remark 2.2 In general, there is no hope of extending the cancellation prop-
erty beyond non zero-divisors. If 〈A, T 〉 is a partially ordered ring and d is a
zero-divisor in N ∩ T , there is a ∈ A \ {0} such that da = 0 = d(−a); hence,
the cancellation of d would imply a ∈ supp(T ), an impossibility. �

Lemma 2.3 a) The class of p-rings with the weak cancellation property is
closed under arbitrary non-trivial reduced products. In particular, it is closed
under arbitrary non-trivial products.

b) If A is a ring, the class of preorders of A with the wcp is closed under
arbitrary intersections and upward directed unions.

Proof. a) Let {〈Ai, Ti 〉 : i ∈ I} be a non-empty family of p-rings with the wcp
and let D be a proper filter in I. For each i ∈ I, write N i for the multiplicative
set of non zero-divisors in Ai and

〈A, T 〉 = 〈
∏
i∈I Ai,

∏
i∈I Ti 〉 and 〈AD, TD 〉 = 〈

∏
D Ai,

∏
DTi 〉

for the product and the reduced product mod D of the 〈Ai, Ti 〉, respectively.
Let ND be the set of non zero-divisors in AD. We start with the following

Fact. For all z ∈
∏
i∈I Ai, we have z/D ∈ ND ⇔ {i ∈ I : z(i) ∈ N i} ∈

D.

Proof. ⇒ : Suppose z/D ∈ ND and set K = {i ∈ I : z(i) ∈ N i}. For each i
∈ Kc = I \ K, z(i) 6∈ N i and so there is ai ∈ Ai \ {0} such that z(i)ai = 0.
Define, for i ∈ I,

a(i) =

{
ai if i ∈ Kc

0 if i ∈ K.

Then, az = 0 and so, a/Dz/D = (az)/D = 0/D. Since z/D ∈ ND, we get
a/D = 0/D whence, {i ∈ I : a(i) = 0} = K ∈ D, as needed.

⇐ : Assume a ∈ A satisfies a/D · z/D = (az)/D = 0, the definition of reduced
product entails that J = {i ∈ I : a(i)z(i) = 0} ∈ D; set K = {i ∈ I : z(i) ∈
N i} ∈ D. Hence, G = K ∩ J ∈ D and for all i ∈ G, a(i) = 0, whence a/D =
0 and z/D ∈ ND. 2

Let a/D ∈ AD and assume c/D ∈ TD ∩ ND is so that (a/D)(c/D) =
(ac)/D ∈ TD. Then, U = {i ∈ I : a(i)c(i) ∈ Ti} ∈ D. By the Fact, V = {i ∈
I : c(i) ∈ Ti ∩ N i} ∈ D. Hence, W = U ∩ V ∈ D and for all i ∈ W , a(i) ∈
Ti, whence a/D ∈ TD, as desired.
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b) Let T = {Tλ : λ ∈ Λ} be a family of preorders of A with the wcp. Clearly,⋂
λ∈Λ Tλ is a preorder of A with the wcp. Assume T is upward directed3

and set T =
⋃
λ∈Λ Tλ. If a ∈ A and c ∈ N ∩ T satisfy cx ∈ T , the upward

directedness of T yields λ ∈ Λ such that c ∈ N ∩ Tλ and ca ∈ Tλ, whence, a
∈ Tλ ⊆ T , as desired. �

Remarks 2.4 a) Any ring -po which is a chain (or linear; a lo- ring) has the
wcp and so, by 2.3, so does every reduced product of lo-rings. To establish the
first assertion, let 〈R,≤〉 be an lo-ring and assume yx > 0, with y > 0 being
a non zero-divisor in R; then, we must have x ≥ 0, otherwise −yx = y(−x) >
0, a contradiction.

b) If A is a ring, then A× ⊆ N . Whenever, A× = N , then A is its own total
ring of quotients and every preorder of A has the wcp. This is the case of fields
and, by 2.3, the case of any reduced product of rings in which units and non
zero-divisors coincide. For instance, if A is a von Neumann regular ring (i.e.,
all principal ideals are generated by an idempotent), then A× = N . To see
this, assume 0 6= d 6∈ A×, that is (d) 6= A; then, there is an idempotent e ∈ A
such that (d) = (e), with e 6= 1. But then we have 1 − e 6= 0 and d(1 − e) =
0, showing that d is a zero-divisor in A.

c) It follows from Lemma 2.3 and Theorem 6.2.5 (p. 412 in [4]; without need
of the continuum hypothesis by the observations in the penultimate paragraph
of page 414 in [4]), the first-order theory of p-rings with the wcp has a Horn
axiomatization; it would be of interest to exhibit an explicit axiomatization of
this form.

d) Propositions 2.5 and 3.3, below, describe yet other classes of rings with the
wcp. �

If X is a topological space, C(X) is the f -ring of continuous real-valued
functions defined on X. For f ∈ C(X),

[[f = 0]] = {x ∈ X : f(x) = 0}
is the zero-set of f , a closed set in X. Similarly, one defines [[f ≥ 0]], [[f > 0]],
[[f 6= 0]], etc. (see 8.22, p. 108 in FQR).

If K is a closed set in X, the set

PK = {f ∈ C(X) : K ⊆ [[f ≥ 0]]}
is a proper preorder of C(X), which is of bounded inversion iff K = X (cf.
Lemma 8.28, p. 113 in FQR). Recall that a closed set K in X is

• regular if it is the closure of its interior; • rare (in X) if it has empty
interior.

3 I.e., Λ 6= ∅ and for all λ1, λ2 ∈ Λ, there is λ ∈ Λ so that Tλ1 , Tλ2 ⊆ Tλ.
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Proposition 2.5 Let X be a completely regular Hausdorff space and let N
be the multiplicative set of non-zero-divisors in C(X).

a) For f ∈ C(X), the following are equivalent:

(1) f ∈ N ; (2) [[f = 0]] is rare in X.

b) If K is a regular closed set in X, then the preorder PK defined above has the
weak cancellation property (cf. 2.1). In particular, the natural partial order of
C(X), namely C(X)2, has the wcp.

Proof. a) (1) ⇒ (2) : If [[f = 0]] has non-empty interior, select p ∈ U ⊆ [[f = 0]],
with U open in X. By complete regularity, there is g ∈ C(X), such that g(p)
= 1 and g �(X\ U) = 0. Clearly, fg = 0, with g 6= 0, contradicting (1).

(2) ⇒ (1) : By (2), V = [[f 6= 0]] is a dense open set in X. If gf = 0, then V
⊆ [[g = 0]] and so, since the zero-set of g is closed, we obtain g = 0 everywhere
on X, as needed.

b) We first note

Fact 2.6 If F is a rare closed set in X, then K \ (K ∩ F ) is dense in K.

Proof. Let V = X \ F (a dense open in X) and let U be the interior of K.
Since K is regular, it suffices to check that K \ (K ∩ F ) = K ∩ V is dense in
U . If not, there are p ∈ W ⊆ U , with W open in X, such that W ∩ (K ∩ V )
= W ∩ V = ∅, which is impossible, since V is dense in X. 2

Let f ∈ N ∩ PK and assume that fg ≥ 0 on all of K. Set V = X \ [[f = 0]].
By Fact 2.6, K ∩ V is dense in K and contained in [[f > 0]] (because f ≥ 0
on K). Since fg ≥ 0 on K, we must have K ∩ V ⊆ [[g ≥ 0]], whence, since
[[g ≥ 0]] is closed, we conclude K ⊆ [[g ≥ 0]], as desired. �

The following example shows that the hypothesis of regularity in 2.5.(b)
is necessary for PK to have the wcp, yielding, in particular, an example of a
preorder of C(X) without the weak cancellation property. This same example
will also be useful in section 2.

Example 2.7 With notation as above, let A = C(R) and let K = {0} ∪ [1, 2].
Clearly, K is a closed set, which is not regular. It is plain that the function |x|
is a non zero-divisor in A, belonging to PK . Let g be any continuous function
on R, such that g(0) = −1 and is non-negative on [1, 2]. Then, |x|g ∈ PK , but
g 6∈ PK because its value at 0 ∈ K is strictly negative. Hence, PK does not
have the wcp. Note that

supp(PK) = {f ∈ A : f �K = 0},
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and so, 2.5.(a) entails supp(PK) ∩ N = ∅. Moreover, by Lemma 8.28, p.
113 in FQR, PK is a unit-reflecting preorder of A; hence, in general, unit-
reflecting preorders may not have the weak cancellation property. If X is a
metric space, then PK has the wcp iff K is a regular closed set in X (in fact,
perfect normality suffices, i.e., a normal space in which closed sets are Gδ; cf.
paragraphs before Theorem 1.5.19 in [7]). �

We now introduce the notion of weak cancellation closure:

Definition 2.8 If 〈A, T 〉 is a p-ring and N be the multiplicative set of non
zero-divisors in A. Define

cT = {x ∈ A : ∃ c ∈ T ∩ N such that cx ∈ T},
called the weak cancellation closure of T in A.

Lemma 2.9 Let A be a ring and let T , T ′ be preorders of A. With notation
as in 2.8,

a) cT is a preorder of A and T ⊆ cT . Moreover,

(1) cT is proper iff N ∩ supp(T ) = ∅.
(2) T ⊆ T ′ ⇒ cT ⊆ cT ′.

b) If T is a proper partial order of A, the same is true of cT .

c) c(cT ) = cT .

d) cT is the least preorder with the wcp (in the inclusion partial order) con-
taining T .

Proof. a) Clearly, T ⊆ cT (1 ∈ N ); in particular, A2 ⊆ cT . Let a, b ∈ cT
and let c, d ∈ N ∩ T be such that ca, db ∈ T . Then, cdab ∈ T and cda, cdb ∈
T , whence cd(a + b) ∈ T , with cd ∈ T ∩ N . Hence, cT is closed under sums
and products, and so a preorder of A. Since

−1 ∈ cT ⇔ ∃ c ∈ T ∩ N such that −c ∈ T ,

we conclude that cT is proper iff N ∩ supp(T ) = ∅, establishing (1); item (2)
is clear.

b) In view of (a), it suffices to check that supp(T ) = {0} implies supp(cT ) =
{0}. If a ∈ supp(cT ), there are c, d ∈ N ∩ T such that ca, −da ∈ T . Hence,
cda, −cda ∈ T , and so cda = 0, yielding a = 0, as needed.

c) By (a), it is enough to check that c(cT ) ⊆ cT . If a ∈ c(cT ), there is
c ∈ N ∩ cT such that ca ∈ cT . Thus, there are u, v ∈ N ∩ T such that
uc ∈ T and vca ∈ T . Hence, (uc)va ∈ T , with (uc)v ∈ N ∩ T , and so a ∈ cT ,
as desired.
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d) The second assertion is straightforward; the first follows from (c): if a ∈ A
and c ∈ N ∩ cT verify ca ∈ cT , then a ∈ c(cT ) = cT . �

3 Rings of Fractions of f-rings by non Zero-Divisors

A standard reference for f -rings is [2], particularly chapters 8 and 9. For the
convenience of the reader, we register some basic facts concerning this class of
rings (see also section 1 of Chapter 8 (p. 86) in FQR).

A. Lattice-Ordered Rings. A partially ordered ring (po-ring) 〈A,≤〉 is
lattice-ordered (`-ring) if for all a, b ∈ A,

a ∨ b = sup {a, b} and a ∧ b = inf {a, b}
exist in A, where join (or sup) and meet (or inf) are considered with respect
to the partial order ≤. Let A be a `-ring and let a ∈ A. Define

(av) a+ = a ∨ 0, a− = −a ∨ 0 and |a| = a+ ∨ a−,

called the positive part, negative part and absolute value of a in A. It
is clear that a+, a−, |a| ≥ 0. We note the following

Lemma 3.1 ([2], 8.1.4, p. 151) If A is an `-group4 and a, b, x ∈ A, then

a) x + (a ∧ b) = (x + a) ∧ (x + b) and

x + (a ∨ b) = (x + a) ∨ (x + b).

b) −(a ∧ b) = −a ∨ − b and −(a ∨ b) = −a ∧ − b.
c) a + b = (a ∧ b) + (a ∨ b).
d) |a| = a ∨ − a = a+ + a−.

e) |a + b| ≤ |a| + |b|.
f) ([2], 1.3.2, 1.3.3, p. 22) a = a+ − a− and a+ ∧ a− = 0.

g) ([2], Proposition 1.3.4, p. 22) For x, y, z ∈ A, the following are equivalent:

(1) x = y − z and y ∧ z = 0;

(2) y = x+ and z = x−. �

B. f-rings. A lattice-ordered ring is called an f-ring if it is isomorphic to a
subdirect product of linearly ordered rings ([2], Definition 9.1.1, p. 172). We
have

Lemma 3.2 Let A be a ring.

4 For the definition and basic properties of `-groups see Chapter 1 of [2]. The laws that
follow will be used only for the (commutative) additive group of a `-ring.
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a) ([2], Proposition 9.1.10, p. 175) If A is an f -ring and a, b, x ∈ A, then

(1) x ≥ 0 ⇒ x(a ∨ b) = xa ∨ xb and x(a ∧ b) = xa ∧ xb.
(2) |ab| = |a| · |b|.
(3) a ∧ b = 0 ⇒ ab = 0. (4) a2 ≥ 0.

b) ([2], Corollary 9.1.14, p. 176) In a `-ring A, properties (a.1) and (a.2) are
equivalent. Moreover, any unitary ring verifying (a.1) is an f -ring.

c) ([2], Theorem 9.3.1, pp. 178-179) If A is a `-ring, the following are equiva-
lent:

(1) A is a reduced f -ring;

(2) A is a subdirect product of linearly ordered integral domains.

(3) For all a, b ∈ A, |a| ∧ |b| = 0 iff ab = 0. �

If A is a f -ring, we write T] for its natural partial order, which, whenever
convenient, will be denoted by ≤. Regarding the weak cancellation property,
we have the following

Proposition 3.3 Any reduced f -ring satisfies the weak cancellation property.

Proof. If 〈A, T] 〉 is a f -ring, by items (a) and (b) of 2.9, cT] is a proper partial
order, containing T]. But then Proposition 1.11, p. 33, in [12] entails T] = cT]
(see also Proposition 8.15.(a), p. 82 in FQR); by 2.9.(e), T] has the wcp. �

Henceforth, let 〈A, T] 〉 be a reduced f-ring. Notation is as in 1.8.
Let S be a multiplicative subset of N (containing 1). Write AS for the ring of
fractions AS−1 and

T]S = { t
s2 ∈ AS : t ∈ T and s ∈ S}

for the preorder defined in Lemma 1.7.(e). Recall that Q(A) is the total ring of
fractions of A and we write Q(T]) for the extension of T] to Q(A) (cf. 1.8.(c)).5

Lemma 3.4 Notation as above, let S be a saturated multiplicative subset of
N .6

a) For all z ∈ A, z ∈ S ⇔ |z| ∈ S ∩ T].
b) AS is reduced and T]S is a proper ring partial order on AS, to be written
≤S.

c) For f , g ∈ A and x, y ∈ S,

5 In [8], Q(A) denotes the complete ring of quotients of A. Hence, our notation deviates
from that in [8].

6 By 1.9, there is no loss of generality in assuming S is saturated, as is the case of N .
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(1)
f

x
≥S 0 ⇔ fx ≥ 0.7

(2)
f

x2 ≥S 0 ⇔ f ≥ 0. In particular,
f

1
≥S 0 ⇔ f ≥ 0.

(3) (i)
f

x
≥S

g

x
⇔ fx ≥ gx; (ii)

f

x2 ≥S
g

x2 ⇔ f ≥ g.

(4)
f

x
≥S

g

y
⇔ fxy2 ≥ gyx2.

d) The canonical ring morphism, ιS : 〈A, T] 〉 −→ 〈AS , T]S 〉, is a p-ring
embedding.

Proof. a) Since A is an f -ring, it is clear that |z| ∈ T]. Moreover, items (2)
and (4) in 3.2.(a) yield z2 =

∣∣z2
∣∣ = |z|2, whence, since S is saturated, we

obtain z ∈ S iff |z| ∈ S ∩ T], as needed.

b) Clearly, AS is reduced and Lemma 1.7.(e) entails that T]S is a proper pre-
order of AS . To see it is a partial order, assume, for f ∈ A and x ∈ S, that
f

x
∈ supp(T]S); then there are p, q ∈ T] and u, v ∈ S such that

(I)
f

x
=

fx

x2 =
p

u2 and
f

x
=

fx

x2 = − q

v2 .

The first equation in (I) yields fxu2 = px2 ∈ T], while the second gives fxv2

= −qx2 ∈ −T]. Hence, multiplying the former and the latter equations by v2

and u2, respectively, yields fxu2v2 ∈ supp(T]) = {0}. Since xu2v2 ∈ S ⊆ N ,

we conclude f = 0, whence
f

x
= 0, as needed.

c)(1) Suppose there are p ∈ T] and u ∈ S such that

(II)
f

x
=

fx

x2 =
p

u2 .

Then, fxu2 = px2 ∈ T]; now, 3.3 and the wcp yield (because u2 ∈ T] ∩ S
⊆ T] ∩ N ) fx ∈ T], i.e., fx ≥ 0. The converse follows immediately from the
first equality in (II). Item (2) is immediate from (1) and the fact that T] has
the wcp (3.3).

(3.i) Item (c.1) gives

f

x
≥S

g

x
⇔ f

x
− g

x
≥S 0 ⇔ f − g

x
≥S 0 ⇔ fx − gx ≥ 0,

as needed. Item (ii) follows directly from (i) and (c.2).

(4) Note that
f

x
=

fx

x2 =
fxy2

x2y2 , with a similar computation yielding
g

y

=
gyx2

x2y2 , and the desired conclusion follows from (3.(ii)).

7 Recall that ≤ is the partial order T].
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Item (d) is an immediate consequence of (c).(2) (or (c.1)). �

Lemma 3.5 The p-ring 〈AS , T]S 〉 is a `-ring and for f , g ∈ A and x, y ∈
S we have

(1)
f

x
∨ g

y
=

fxy2 ∨ gyx2

x2y2 ; (2)
f

x
∧ g

y
=

fxy2 ∧ gyx2

x2y2 ;

(3)

(
f

x

)+

=
(fx)+

x2 and

(
f

x

)−
=

(fx)−

x2 ;

(4)

∣∣∣∣fx
∣∣∣∣ =

|f |
|x|

; (5)
f

1
∨ g

1
=
f ∨ g

1
and

f

1
∧ g

1
=
f ∧ g

1
.

Proof. To see that 〈AS , T]S 〉 is an `-ring we must check that it is a lattice
with respect to the partial order ≤S , i.e., it suffices to verify (1) and (2).

Proof of (1) : Clearly, in A, fxy2, gyx2 ≤ fxy2 ∨ gyx2; now, item 3.(ii)

in 3.4.(c) entails
f

x
=

fxy2

x2y2 ≤S
fxy2 ∨ gyx2

x2y2 , with an analogous relation

holding for
g

y
.

Now, for a ∈ A and b ∈ S, suppose
f

x
,
g

y
≤S

a

b
. Then, 3.4.(c.4) yields

(*) fxb2 ≤ abx2 and (**) gyb2 ≤ aby2.

Multiplying (*) by y2 and (**) by x2 obtains

fxy2b2 ≤ abx2y2 and gyx2b2 ≤ abx2y2,

and so, since 〈A, T] 〉 is an f -ring, we get, recalling 3.2.(a.1),

(I) (fxy2 ∨ gyx2)b2 = fxy2b2 ∨ gyx2b2 ≤ abx2y2.

But then (I) and another application of (c.4) in 3.4 entail

fxy2 ∨ gyx2

x2y2 =
(fxy2 ∨ gyx2)b2

b2x2y2 ≤S
abx2y2

b2x2y2 =
a

b
,

concluding the proof that
fxy2 ∨ gyx2

x2y2 is indeed the join of
f

x
and

g

y
in the

partial order ≤S . An entirely similar argument, using the second equality in
3.2.(a.1) (to factor out b2 in the analog of (I)) will establish (2). Statement
(3) follows straightforwardly from (1), since for ξ ∈ AS , ξ+ = ξ ∨ 0 and ξ− =
(− ξ) ∨ 0. For instance,

−
(
f

x

)
∨ 0

1
=
−f
x
∨ 0

1
=
−(fx) ∨ 0

x2 =
(fx)−

x2 .

Proof of (4) : By 3.4.(a), for all x ∈ S we have |x| ∈ S ∩ T], and so the right-
hand side of the equality is in AS . Now (3) and 3.2.(a.2), together with the
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fact that for all elements u of a `-ring, |u| = u+ + u− (3.1.(d)) yield, recalling
3.2.(a.2),∣∣∣∣fx

∣∣∣∣ =

(
f

x

)+

+

(
f

x

)−
=

(fx)+

x2 +
(fx)−

x2 =
(fx)+ + (fx)−

x2

=
|fx|
x2 =

|f | |x|
|x|2

=
|f |
|x|

,

ending the proof. Item (5) is an immediate consequence of (1) and (2). �

Theorem 3.6 (Corollary 10.13, [8]) Let 〈A, T] 〉 be a reduced f -ring. If S
is a multiplicative subset of non zero-divisors in A, then 〈AS , T]S 〉 is a reduced
f -ring extension of 〈A, T] 〉. In particular, 〈Q(A), Q(T]) 〉 is a reduced f -ring
extension of 〈A, T] 〉.

Proof. By 1.9, we may suppose, without loss of generality, that S is saturated.
Moreover, Lemmas 3.4.(d) and 3.5 imply that 〈AS , T]S 〉 is a reduced l-ring
extension of 〈A, T 〉. It remains to see that 〈AS , T]S 〉 is an f -ring; to this end,
it suffices, by 3.2.(b), to verify that for all u, v, w ∈ AS ,

(I) u ≥S 0 ⇒ u(v ∨S w) = (uv ∨S uw) and u(v ∧S w) = (uv ∧S uw),

where ∨S and ∧S indicate join and meet in AS , respectively. We shall treat
the first equality; the second can be similarly proven.

Let u =
f

x
≥S 0, v =

g

y
and w =

h

z
, where x, y, z ∈ S ⊆ N . Note that

3.4.(c.1) entails fx ≥ 0, and so fx3 ≥ 0 (in A). But then, (1) in 3.5.(1) and
the fact that A is a f -ring yield,

f

x

(
g

y
∨S

h

z

)
=

fx3

x4

gyz2 ∨ hzy2

y2z2 =
fx3(gyz2 ∨ hzy2)

x4y2z2

=
(fx)(gy)x2z2 ∨ (fx)(hz)x2y2

x4y2z2 =
fg

xy
∨S

fh

xz
,

as needed. A similar argument yields the second equality in the consequent of
(I), and AS is indeed a f -ring. The remaining statement is now clear. �

We now show that rings of fractions of weakly real closed and real closed
rings by multiplicative sets of non zero-divisors are still weakly real closed and
real closed, respectively.

A ring A is a weakly real closed ring (WRCR) (introduced in Definition
8.33, p. 166 of FQR) if it satisfies

[WRCR 1] : A is reduced;

[WRCR 2] : A2 is the positive cone of a partial order ≤ on A, with which it is
a f -ring;
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[WRCR 3] : For all a, b ∈ A, 0 ≤ a ≤ b ⇒ b divides a2.

Corollary 3.7 If A is a WRCR and S is multiplicative subset of the non
zero-divisors in A, then AS = AS−1 is a weakly real closed ring.

Proof. Since A is a reduced f -ring with T] = A2, it is clear that T]S =
(AS)2; moreover, by Theorem 3.6, 〈AS , (AS)2 〉 is a reduced f -ring extension
of 〈A,A2 〉. It remains to check AS satisfies [WRCR 3]. By Remark 1.9, we
may assume S is saturated. Suppose

(I) 0 ≤S
a

x
≤S

b

y
,

with a, b ∈ A and x, y ∈ S. By items (1) and (4) in Lemma 3.4.(c), (I) is
equivalent to

(II) 0 ≤ axy2 ≤ byx2.

Hence, (II) and axiom [WRCR 3] applied in A yields α ∈ A such that

(III) a2x2y4 = α byx2,

Since x4y4 ∈ S ∩ A2, (III) and (c).(3.ii) in 3.4 entail,(
a

x

)2
=

a2

x2 =
a2x2y4

x4y4 =
α

1
· byx

2

x4y4 =
α

x2y2 ·
by

y2 =
α

x2y2 ·
b

y
,

as needed to verify [WRCR 3] in AS . �

Proposition 3.8 If A is a real closed ring and S is a multiplicative subset of
non zero-divisors in A, then AS = AS−1 is real closed. In particular, Q(A) is
real closed.

Proof. Recall that A is real closed if it is weakly real closed and it satisfies
(cf. Remark 8.34, p. 117 in FQR and [11])

[RC] For all proper prime ideals p ⊆ A, the field of fractions of A/p is real clo-
sed and A/p is integrally closed in it.

We begin by recalling certain basic algebraic facts.

Fact 1. Let D be a domain and k its field of fractions. If S is a proper
multiplicative set in D, then DS = DS−1 is an integral domain and its field of
fractions is (canonically isomorphic to) k.

Proof. Clearly, DS is an integral domain; let F be its field of fractions. Up
to isomorphism, we may consider D ⊆ DS ⊆ F and D ⊆ k. Since F is a
field containing D, we conclude that k ⊆ F ; on the other hand, because every
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element of S is a unit in k, we also have DS ⊆ k, wherefrom we conclude F ⊆
k, as needed.8 2

Recall that if A is a ring, Spec(A) is the space of proper prime ideals in
A, the Zariski spectrum of A. We register the well-known (cf. Proposition
3.11.(iv), p. 41 in [1])

Fact 2. Let A be a ring, S be a multiplicative set in A and ιS : A −→
AS = AS−1 be the canonical morphism. The map p ∈ Spec(AS)

h7−→ ι−1
S (p) ∈

Spec(A) is a homeomorphism onto S = {q ∈ Spec(A) : q ∩ S = ∅}, with the
topology induced by Spec(A); the inverse of h is given by q ∈ S 7−→ qS−1 ={
a

s
∈ AS : a ∈ q and s ∈ S

}
. �

Fact 3. (Corollary 3.4, p. 39 in [1]) LetA be a ring, I an ideal inA and S a mul-

tiplicative set inA with I ∩ S = ∅. Let IS := IS−1 =
{
a

s
∈ AS : a ∈ I and s ∈ S

}
.

Then, IS is a proper ideal in AS , S/I is a proper multiplicative set in A/I and
AS/IS is naturally isomorphic to the ring of fractions (A/I)(S/I)−1, that is,
there is a unique ring isomorphism, h : AS/IS −→ (A/I)(S/I)−1, making the
following diagram commute

AS - AS/IS

f h

(A/I)(S/I)−1

π

A
A
A
A
AAU

�
�
�
�
���

where π is the canonical quotient projection. �

Fact 4. (Proposition 5.12, p. 62 in [1]) Let A ⊆ B be rings, C the integral
closure of A in B. Let S be a multiplicative subset of A. Then, CS−1 is the
integral closure of AS−1 in BS−1. �

Now, let A be a real closed ring and S be a proper multiplicative subset of
the non zero-divisors in A. Since we already know (by 3.7) that AS is weakly
real closed, it remains to see that it has property [RC] stated above. Let p
a proper prime ideal in AS ; by Fact 2, p is of the form qS = qS−1, for some
prime q in A, disjoint from S. Since A/q is an integral domain, it follows from
Facts 1 and 3 that the field of fractions of AS/p = AS/qS ≈ (A/q)(S/q)−1

is isomorphic to the field of quotients of A/q, kq, which, by assumption is real

8 The universal property of rings of fractions yields a (more) formal proof: s, t ∈ S and
a, b ∈ D, with b 6= 0, the map a

s
/ b
t
∈ F 7−→ (at)(bs)−1 ∈ k is an isomorphism over DS .
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closed. Moreover, by Fact 4, AS/p ≈ (A/q)(S/q)−1 is integrally closed in
kq(S/q)−1 ≈ kq, and AS is a real closed ring, ending the proof. �
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