South American Journal of Logic Vol. 4, n. 2, pp. 423–440, 2018 ISSN: 2446-6719

§∀JL

On Rings of Fractions of Reduced f-Rings by Non Zero-Divisors

Francisco Miraglia

Abstract

We present a new and elementary proof of a result of Knebusch and Zhang, namely that the ring of fractions of an *f*-ring, *A*, by a multiplicative set of non zero-divisors in *A* is an *f*-ring extension of *A*. (Corollary 10.13, p. 84 in M. Knebusch, D. Zhang, *Convexity, Valuations and Prüfer Extensions in Real Algebra*, Documenta Math. **10** (2005), 1-109.)

The purpose of these notes is to present an elementary proof of Corollary 10.13, p. 84 in [8] for reduced f-rings, namely that the ring of fractions of such ring, A, by a multiplicative set of non zero-divisors in A is an f-ring extension of A (cf. Theorem 3.6); in [8] this obtained as a consequence of the more general Theorem 10.9 (p. 80) for the complete ring of quotients of A, as define by J. Lambek in [9]. For applications of these results to quadratic form theory, see, among others, Theorem 8.21 and Corollary 8.23 (pp. 90 ff) in [6]. Moreover, we also give elementary proofs that rings of quotients of weakly real closed and real closed, respectively.

Section 1 contains, for the convenience of the reader, some standard and basic facts on Real Algebra and on preorders of rings, while in section 2 we introduce and discuss the basic properties of a certain class of preorders having a cancellation property with respect to non zero-divisors, that will be useful in section 3.

All notational conventions in [6], indicated by FQR, remain in force. In particular, all rings are commutative and unitary, wherein 2 is a unit. If A is a ring and $B \subseteq A$, write B^{\times} for the set of units in B; in particular, A^{\times} is the group of units in A.

1 Preliminaries

We recall some basic facts of Real Algebra that can be found in 6.1 and 7.7 of **FQR**.

1.1 Let A be a ring.

a) A **preorder** on A is a subset T of A, containing the squares (A^2) and closed under addition and multiplication. A preorder T on A is **proper** if $T \neq A$; since $2 \in A^{\times}$, T is proper iff $-1 \notin T$. Clearly, ΣA^2 (sums of squares) is the least preorder on A; A is said to be **semi-real** if $-1 \notin \Sigma A^2$. A **p-ring** is a pair $\langle A, T \rangle$, with T a preorder on A; henceforth, all p-rings shall be assumed to be proper; in particular, they are all semi-real, that is, $-1 \notin \Sigma A^2$.

b) If T is a preorder on A, the set $\operatorname{supp}(T) = T \cap -T$ is called the **support** of T. T is a **partial order** if $\operatorname{supp} T = \{0\}$; in this case, $\langle A, T \rangle$ is a **partially ordered ring (po-ring)** and T is a called a **ring-po**.

c) If $\langle A, T \rangle$ is a p-ring, it is sometimes convenient to write $x \ge_T y$ iff $x - y \in T$. Note that for all $x, y, z \in A$

1. $x \ge_T y \implies x + z \ge_T y + z$; 2. $x \ge_T y$ and $z \ge_T 0 \implies xz \ge_T yz$. Indeed, we have $(x + z) - (y + z) = x - y \in T$, entailing (1); for (2), the closure of T under multiplication obtains $z(x - y) = xz - zy \in T$, as needed. The relations (1) and (2) shall be used below, frequently without explicit mention.

d) If $\langle A, T \rangle$, $\langle A', T' \rangle$ are p-rings, a **p-ring morphism** is a ring morphism, f: $A \longrightarrow A'$, such that $f[T] \subseteq T'$; f is an **embedding** if it is injective and for all $a \in A$, $a \in T \iff f(a) \in T'$ (in this case $\langle A', T' \rangle$ is a *p-ring extension* of $\langle A, T \rangle$).

1.2 An ideal I in a p-ring $\langle A, T \rangle$ is

* **T-convex** if for all $s, t \in T$, $s + t \in I \Rightarrow s, t \in I$;

* **T-radical** if for all $a \in A$ and $t \in T$, $a^2 + t \in I \Rightarrow a \in I$.

A ΣA^2 -radical ideal is called **real**.

By Proposition 4.2.5 in [3] an ideal of A is T-radical iff it is T-convex and radical. In particular, a prime ideal is T-radical iff it is T-convex.

Proposition 1.3 a) ([3], Prop. 4.2.7, p. 87) A preorder T on a ring A is proper iff A has a proper T-convex ideal.

b) If T is a preorder of A, any ideal of A, maximal for the property of being T-convex, is prime.

Proposition 1.4 ([3], Prop. 4.2.6, p. 87) Given a preorder T of A, every ideal I of A is contained in a smallest T-radical ideal (possibly improper), namely:

 $\sqrt[T]{I} = \{a \in A : \exists m \in \mathbb{N} and t \in T such that a^{2m} + t \in I\},\$

called the **T-radical of** I, the intersection of all T-convex prime ideals containing I.

Remark 1.5 With notation as in 1.4:

a) If $a \in A$, write $\sqrt[T]{a}$ for the *T*-radical of the principal ideal (*a*). In particular, $\sqrt[T]{0}$ is the *T*-radical of the zero ideal. By 1.4, an ideal *I* is *T*-radical iff $\sqrt[T]{I} = I$.

b) If $T = \Sigma A^2$ and I is an ideal in A, we write $\sqrt[Terrow]{I}$ for $\sqrt[T]{I}$, the **real radical** of I, equal to the intersection of all real primes of A containing I.

c) A ring A is **reduced** if it has no non-zero nilpotent element The next definition describes the analog of the notion of reduced in the case of preordered rings.

Definition 1.6 A p-ring $\langle A, T \rangle$ is **T**-reduced if $\sqrt[T]{0} = (0)$. In case $T = \Sigma A^2$, i.e., $\sqrt[ref{0}] = (0)$, we say that A is a real ring. Clearly, a T-reduced ring is reduced and semi-real.¹

We recall the following

Lemma 1.7 If $\langle A, T \rangle$ is a proper p-ring, then:

a) supp(T) is a proper ideal in A.

b) $\sqrt[T]{\operatorname{supp}(T)} = \sqrt[T]{0}$. In particular, $\operatorname{supp}(T)$ is contained in all T-convex prime ideals of A.

c) The following conditions are equivalent:

- (1) T is a partial order of A;
- (2) The zero ideal is T-convex (1.1).

d) $\langle A, T \rangle$ is T-reduced \Leftrightarrow A is reduced and T is partial order of A. In particular,

- (1) A is real \Leftrightarrow it is reduced and ΣA^2 is a partial order of A.
- (2) The following are equivalent:

¹ Since $\sqrt[T]{0} = (0)$ is the intersection of all *T*-convex prime ideals, the intersection of all primes in *A* is (0) (i.e., *A* is reduced); further, *A* has a proper real prime ideal and so ΣA^2 is a proper preorder of *A* (by 1.3.(*a*)). Moreover, our definition of real ring coincides with the usual one, i.e. (0) is a real ideal (cf. 1.5.(*a*)).

(i) A is Pythagorean (i.e., $A^2 = \Sigma A^2$) and real;

(ii) A is reduced and A^2 is a partial order of A.

e) Let S be a proper multiplicative subset of A and let

$$T_S = \left\{ \frac{t}{s^2} \in AS^{-1} : t \in T \text{ and } s \in S \right\}.$$

Then, T_S is a proper preorder of AS^{-1} iff $S \cap \operatorname{supp}(T) = \emptyset$.

In particular, this holds if T is a partial order, i.e., $supp(T) = \{0\}$.

Proof. a) Clearly, $\operatorname{supp}(T)$ is closed under addition and $1 \in \operatorname{supp}(T)$ iff $-1 \in T$. If $t \in \operatorname{supp}(T)$, i.e., $t, -t \in T$ and $x \in A$, recalling that $2 \in T^{\times}$, we have

$$-xt = \frac{-t(1+x)^2 + t(1-x)^2}{4} \in T;$$

similarly one shows that $xt \in T$, and supp(T) is indeed an ideal in A.

b) The second assertion in (b) follows from the first assertion and Proposition 1.4. For the former, since taking the *T*-radical (defined in 1.4) is an increasing operation on ideals, and $(0) \subseteq \operatorname{supp}(T)$, it suffices to verify $\sqrt[T]{\operatorname{supp}(T)} \subseteq \sqrt[T]{0}$. Fix $a \in A$ and suppose there is a positive integer k and $t \in T$ such that $a^{2k} + t \in \operatorname{supp}(T)$; then, for some $s \in T$, we have $a^{2k} + (t + s) = 0$; since $s + t \in T$, we conclude $a \in \sqrt[T]{0}$, as needed.

c) $(1) \Rightarrow (2)$: Assume s + t = 0, with $s, t \in T$; since T is the positive cone of a ring-po in A, we have $0 \le s \le s + t = 0$, which implies s = t = 0 and (0) is T-convex.

 $(2) \Rightarrow (1)$: Since T is a preorder of A, it will be a ring-po if $T \cap -T = \{0\}$. If $x \in T \cap -T$, there is $t \in T$ such that -x = t and so x + t = 0. Since (0) is T-convex, we conclude x = 0, as needed.

d) If A is T-reduced, then A is reduced (cf. 1.6 and its footnote). Moreover, since $(0) = \sqrt[T]{0}$, it follows immediately from (b) that $\operatorname{supp}(T) = \{0\}$ and T is a partial order of A. Conversely, by the equivalence in (c), (0) is T-convex and reducibility implies it to be T-radical, because $a^2 = 0$ entails a = 0. But then Proposition 1.4 yields $\sqrt[T]{0} = (0)$, as needed. The remaining assertions in (d) are now clear. Item (e) is straightforward, recalling that since $2 \in A^{\times}$, a preorder P is proper iff $-1 \notin P$ (e.g., if $-1 = \frac{t}{s^2}$, then there is $s' \in S$ so that $s'(-s^2 - t) = 0$, whence $(ss')^2 = -s'^2t \in \operatorname{supp} T \cap S$.)

1.8 a) Let A be a unitary ring and let \mathcal{N} be the proper multiplicative subset of **non zero-divisors** in A, i.e.,

$$\mathcal{N} = \{ a \in A : \forall b \in A, ab = 0 \Rightarrow b = 0 \}.$$

b) The set \mathcal{N} is saturated (i.e., $xy \in \mathcal{N} \iff x, y \in \mathcal{N}$); moreover, by Exercise

9, page 44 in [1], \mathcal{N} is the largest multiplicative subset of A for which the canonical ring morphism, $\iota_{\mathcal{N}} : A \longrightarrow Q(A) =: A\mathcal{N}^{-1}$, given by $a \longmapsto \frac{a}{1}$, is injective. Note that for $a, b \in A$ and $x, y \in \mathcal{N}$,

$$ax = 0 \iff a = 0$$
 and $\frac{a}{x} = \frac{b}{y} \iff ay = bx$.

The ring Q(A) is the total ring of fractions of A.

c) If T is a preorder of A, define

$$Q(T) = \left\{ \frac{t}{x^2} : t \in T \text{ and } x \in \mathcal{N} \right\}.$$

By 1.7.(e), Q(T) is a preorder of Q(A), which is proper iff supp $T \cap \mathcal{N} = \emptyset$.

Remark 1.9 Let A be a ring and let S be a proper multiplicative subset of $A \ (0 \notin S \text{ and } 1 \in S)$. It is well-known that the set

 $\mathcal{P}(S) = \{ \mathfrak{p} \subseteq A : \mathfrak{p} \text{ is a proper prime ideal and } \mathfrak{p} \cap S = \emptyset \}$

is non-empty.² Let $\widehat{S} = \bigcap \{A \setminus \mathfrak{p} : \mathfrak{p} \in \mathcal{P}(S)\}$. Then, \widehat{S} is the smallest saturated (i.e., $x, y \in \widehat{S} \Leftrightarrow xy \in \widehat{S}$) proper multiplicative set containing S. Moreover, for all multiplicative sets M satisfying $S \subseteq M \subseteq \widehat{S}$, the rings of fractions AS^{-1} and AM^{-1} are naturally isomorphic over A, i.e., there is a unique ring isomorphism, f, making the following diagram commutative, where ι_{\bullet} are the canonical maps from A to the respective ring of fractions:

Hence, we may assume, whenever necessary, that the multiplicative set under consideration is saturated. $\hfill\blacksquare$

2 The Weak Cancellation Property. The Weak Cancellation Closure of a Preorder

A crucial property in what follows is contained in the following

² Apply Zorn's Lemma to the partially ordered set \mathcal{V} of ideals that do not meet S; note that $(0) \in \mathcal{V}$. Any maximal element in \mathcal{V} is prime and disjoint from S.

Definition 2.1 A p-ring $\langle A, T \rangle$ has the weak cancellation property (wcp) (with respect to non zero-divisors) if for all $a, b \in A$, [canc] $ab \in T$ and $b \in \mathcal{N} \cap T \Rightarrow a \in T$.

Remark 2.2 In general, there is no hope of extending the cancellation property beyond non zero-divisors. If $\langle A, T \rangle$ is a *partially* ordered ring and d is a zero-divisor in $\mathcal{N} \cap T$, there is $a \in A \setminus \{0\}$ such that da = 0 = d(-a); hence, the cancellation of d would imply $a \in \text{supp}(T)$, an impossibility.

Lemma 2.3 a) The class of p-rings with the weak cancellation property is closed under arbitrary non-trivial reduced products. In particular, it is closed under arbitrary non-trivial products.

b) If A is a ring, the class of preorders of A with the wcp is closed under arbitrary intersections and upward directed unions.

Proof. a) Let $\{\langle A_i, T_i \rangle : i \in I\}$ be a non-empty family of p-rings with the wcp and let D be a proper filter in I. For each $i \in I$, write \mathcal{N}_i for the multiplicative set of non zero-divisors in A_i and

 $\langle A,T \rangle = \langle \prod_{i \in I} A_i, \prod_{i \in I} T_i \rangle$ and $\langle A_D, T_D \rangle = \langle \prod_D A_i, \prod_D T_i \rangle$ for the product and the reduced product mod D of the $\langle A_i, T_i \rangle$, respectively. Let \mathcal{N}_D be the set of non zero-divisors in A_D . We start with the following

Fact. For all $z \in \prod_{i \in I} A_i$, we have $z/D \in \mathcal{N}_D \iff \{i \in I : z(i) \in \mathcal{N}_i\} \in D$.

Proof. \Rightarrow : Suppose $z/D \in \mathcal{N}_D$ and set $K = \{i \in I : z(i) \in \mathcal{N}_i\}$. For each $i \in K^c = I \setminus K$, $z(i) \notin \mathcal{N}_i$ and so there is $a_i \in A_i \setminus \{0\}$ such that $z(i)a_i = 0$. Define, for $i \in I$,

$$a(i) = \begin{cases} a_i & \text{if } i \in K^c \\ 0 & \text{if } i \in K. \end{cases}$$

Then, az = 0 and so, a/Dz/D = (az)/D = 0/D. Since $z/D \in \mathcal{N}_D$, we get a/D = 0/D whence, $\{i \in I : a(i) = 0\} = K \in D$, as needed.

 $\underbrace{\leftarrow} : \text{Assume } a \in A \text{ satisfies } a/D \cdot z/D = (az)/D = 0, \text{ the definition of reduced} \\ \text{product entails that } J = \{i \in I : a(i)z(i) = 0\} \in D; \text{ set } K = \{i \in I : z(i) \in \mathcal{N}_i\} \in D. \text{ Hence, } G = K \cap J \in D \text{ and for all } i \in G, a(i) = 0, \text{ whence } a/D = 0 \text{ and } z/D \in \mathcal{N}_D.$

Let $a/D \in A_D$ and assume $c/D \in T_D \cap \mathcal{N}_D$ is so that $(a/D)(c/D) = (ac)/D \in T_D$. Then, $U = \{i \in I : a(i)c(i) \in T_i\} \in D$. By the Fact, $V = \{i \in I : c(i) \in T_i \cap \mathcal{N}_i\} \in D$. Hence, $W = U \cap V \in D$ and for all $i \in W$, $a(i) \in T_i$, whence $a/D \in T_D$, as desired.

b) Let $\mathcal{T} = \{T_{\lambda} : \lambda \in \Lambda\}$ be a family of preorders of A with the wcp. Clearly, $\bigcap_{\lambda \in \Lambda} T_{\lambda}$ is a preorder of A with the wcp. Assume \mathcal{T} is upward directed³ and set $T = \bigcup_{\lambda \in \Lambda} T_{\lambda}$. If $a \in A$ and $c \in \mathcal{N} \cap T$ satisfy $cx \in T$, the upward directedness of \mathcal{T} yields $\lambda \in \Lambda$ such that $c \in \mathcal{N} \cap T_{\lambda}$ and $ca \in T_{\lambda}$, whence, $a \in T_{\lambda} \subseteq T$, as desired.

Remarks 2.4 a) Any ring -po which is a chain (or linear; a lo- ring) has the wcp and so, by 2.3, so does every reduced product of lo-rings. To establish the first assertion, let $\langle R, \leq \rangle$ be an lo-ring and assume yx > 0, with y > 0 being a non zero-divisor in R; then, we must have $x \geq 0$, otherwise -yx = y(-x) > 0, a contradiction.

b) If A is a ring, then $A^{\times} \subseteq \mathcal{N}$. Whenever, $A^{\times} = \mathcal{N}$, then A is its own total ring of quotients and *every* preorder of A has the wcp. This is the case of fields and, by 2.3, the case of any reduced product of rings in which units and non zero-divisors coincide. For instance, if A is a von Neumann regular ring (i.e., all principal ideals are generated by an idempotent), then $A^{\times} = \mathcal{N}$. To see this, assume $0 \neq d \notin A^{\times}$, that is $(d) \neq A$; then, there is an idempotent $e \in A$ such that (d) = (e), with $e \neq 1$. But then we have $1 - e \neq 0$ and d(1 - e) =0, showing that d is a zero-divisor in A.

c) It follows from Lemma 2.3 and Theorem 6.2.5 (p. 412 in [4]; without need of the continuum hypothesis by the observations in the penultimate paragraph of page 414 in [4]), the first-order theory of p-rings with the wcp has a Horn axiomatization; it would be of interest to exhibit an explicit axiomatization of this form.

d) Propositions 2.5 and 3.3, below, describe yet other classes of rings with the wcp. $\hfill\blacksquare$

If X is a topological space, $\mathbb{C}(X)$ is the f-ring of continuous real-valued functions defined on X. For $f \in \mathbb{C}(X)$,

$$\llbracket f = 0 \rrbracket = \{ x \in X : f(x) = 0 \}$$

is the zero-set of f, a closed set in X. Similarly, one defines $\llbracket f \ge 0 \rrbracket$, $\llbracket f > 0 \rrbracket$, $\llbracket f \ne 0 \rrbracket$, etc. (see 8.22, p. 108 in **FQR**).

If K is a closed set in X, the set

$$P_K = \{ f \in \mathbb{C}(X) : K \subseteq \llbracket f \ge 0 \rrbracket \}$$

is a proper preorder of $\mathbb{C}(X)$, which is of bounded inversion iff K = X (cf. Lemma 8.28, p. 113 in **FQR**). Recall that a closed set K in X is

• regular if it is the closure of its interior; • rare (in X) if it has empty interior.

³ I.e., $\Lambda \neq \emptyset$ and for all $\lambda_1, \lambda_2 \in \Lambda$, there is $\lambda \in \Lambda$ so that $T_{\lambda_1}, T_{\lambda_2} \subseteq T_{\lambda}$.

Proposition 2.5 Let X be a completely regular Hausdorff space and let \mathcal{N} be the multiplicative set of non-zero-divisors in $\mathbb{C}(X)$.

a) For $f \in \mathbb{C}(X)$, the following are equivalent:

(1) $f \in \mathcal{N}$; (2) $\llbracket f = 0 \rrbracket$ is rare in X.

b) If K is a regular closed set in X, then the preorder P_K defined above has the weak cancellation property (cf. 2.1). In particular, the natural partial order of $\mathbb{C}(X)$, namely $\mathbb{C}(X)^2$, has the wcp.

Proof. a) (1) \Rightarrow (2) : If $\llbracket f = 0 \rrbracket$ has non-empty interior, select $p \in U \subseteq \llbracket f = 0 \rrbracket$, with U open in X. By complete regularity, there is $g \in \mathbb{C}(X)$, such that g(p) = 1 and $g \upharpoonright (X \setminus U) = 0$. Clearly, fg = 0, with $g \neq 0$, contradicting (1).

 $(\underline{2}) \Rightarrow (\underline{1})$: By $(\underline{2}), V = \llbracket f \neq 0 \rrbracket$ is a dense open set in X. If gf = 0, then $V \subseteq \llbracket g = 0 \rrbracket$ and so, since the zero-set of g is closed, we obtain g = 0 everywhere on X, as needed.

b) We first note

Fact 2.6 If F is a rare closed set in X, then $K \setminus (K \cap F)$ is dense in K.

Proof. Let $V = X \setminus F$ (a dense open in X) and let U be the interior of K. Since K is regular, it suffices to check that $K \setminus (K \cap F) = K \cap V$ is dense in U. If not, there are $p \in W \subseteq U$, with W open in X, such that $W \cap (K \cap V) = W \cap V = \emptyset$, which is impossible, since V is dense in X. \Box

Let $f \in \mathcal{N} \cap P_K$ and assume that $fg \ge 0$ on all of K. Set $V = X \setminus [\![f = 0]\!]$. By Fact 2.6, $K \cap V$ is dense in K and contained in $[\![f > 0]\!]$ (because $f \ge 0$ on K). Since $fg \ge 0$ on K, we must have $K \cap V \subseteq [\![g \ge 0]\!]$, whence, since $[\![g \ge 0]\!]$ is closed, we conclude $K \subseteq [\![g \ge 0]\!]$, as desired.

The following example shows that the hypothesis of regularity in 2.5.(b) is necessary for P_K to have the wcp, yielding, in particular, an example of a preorder of $\mathbb{C}(X)$ without the weak cancellation property. This same example will also be useful in section 2.

Example 2.7 With notation as above, let $A = \mathbb{C}(\mathbb{R})$ and let $K = \{0\} \cup [1, 2]$. Clearly, K is a closed set, which is not regular. It is plain that the function |x| is a non zero-divisor in A, belonging to P_K . Let g be any continuous function on \mathbb{R} , such that g(0) = -1 and is non-negative on [1, 2]. Then, $|x|g \in P_K$, but $g \notin P_K$ because its value at $0 \in K$ is strictly negative. Hence, P_K does not have the wcp. Note that

$$\operatorname{supp}(P_K) = \{ f \in A : f \upharpoonright K = 0 \},\$$

and so, 2.5.(a) entails $\operatorname{supp}(P_K) \cap \mathcal{N} = \emptyset$. Moreover, by Lemma 8.28, p. 113 in **FQR**, P_K is a unit-reflecting preorder of A; hence, in general, unit-reflecting preorders may not have the weak cancellation property. If X is a *metric space*, then P_K has the wcp *iff* K is a regular closed set in X (in fact, perfect normality suffices, i.e., a normal space in which closed sets are G_{δ} ; cf. paragraphs before Theorem 1.5.19 in [7]).

We now introduce the notion of weak cancellation closure:

Definition 2.8 If $\langle A, T \rangle$ is a p-ring and \mathcal{N} be the multiplicative set of non zero-divisors in A. Define

 $\mathfrak{c}T = \{ x \in A : \exists c \in T \cap \mathcal{N} \text{ such that } cx \in T \},\$

called the weak cancellation closure of T in A.

Lemma 2.9 Let A be a ring and let T, T' be preorders of A. With notation as in 2.8,

a) cT is a preorder of A and $T \subseteq cT$. Moreover,

(1) $\mathfrak{c}T$ is proper iff $\mathcal{N} \cap \operatorname{supp}(T) = \emptyset$.

(2) $T \subseteq T' \quad \Rightarrow \quad \mathfrak{c}T \subseteq \mathfrak{c}T'.$

b) If T is a proper partial order of A, the same is true of cT.

c)
$$\mathfrak{c}(\mathfrak{c}T) = \mathfrak{c}T.$$

d) cT is the least preorder with the wcp (in the inclusion partial order) containing T.

Proof. a) Clearly, $T \subseteq \mathfrak{c}T$ $(1 \in \mathcal{N})$; in particular, $A^2 \subseteq \mathfrak{c}T$. Let $a, b \in \mathfrak{c}T$ and let $c, d \in \mathcal{N} \cap T$ be such that $ca, db \in T$. Then, $cdab \in T$ and $cda, cdb \in T$, whence $cd(a + b) \in T$, with $cd \in T \cap \mathcal{N}$. Hence, $\mathfrak{c}T$ is closed under sums and products, and so a preorder of A. Since

 $-1 \in \mathfrak{c}T \quad \Leftrightarrow \quad \exists \ c \in T \cap \mathcal{N} \text{ such that } -c \in T,$

we conclude that $\mathfrak{c}T$ is proper iff $\mathcal{N} \cap \operatorname{supp}(T) = \emptyset$, establishing (1); item (2) is clear.

b) In view of (a), it suffices to check that $\operatorname{supp}(T) = \{0\}$ implies $\operatorname{supp}(\mathfrak{c}T) = \{0\}$. If $a \in \operatorname{supp}(\mathfrak{c}T)$, there are $c, d \in \mathcal{N} \cap T$ such that $ca, -da \in T$. Hence, $cda, -cda \in T$, and so cda = 0, yielding a = 0, as needed.

c) By (a), it is enough to check that $\mathfrak{c}(\mathfrak{c}T) \subseteq \mathfrak{c}T$. If $a \in \mathfrak{c}(\mathfrak{c}T)$, there is $c \in \underline{\mathcal{N}} \cap \mathfrak{c}T$ such that $ca \in \mathfrak{c}T$. Thus, there are $u, v \in \mathcal{N} \cap T$ such that $uc \in T$ and $vca \in T$. Hence, $(uc)va \in T$, with $(uc)v \in \mathcal{N} \cap T$, and so $a \in \mathfrak{c}T$, as desired.

d) The second assertion is straightforward; the first follows from (c): if $a \in A$ and $c \in \mathcal{N} \cap \mathfrak{c}T$ verify $ca \in \mathfrak{c}T$, then $a \in \mathfrak{c}(\mathfrak{c}T) = \mathfrak{c}T$.

3 Rings of Fractions of f-rings by non Zero-Divisors

A standard reference for f-rings is [2], particularly chapters 8 and 9. For the convenience of the reader, we register some basic facts concerning this class of rings (see also section 1 of Chapter 8 (p. 86) in **FQR**).

A. Lattice-Ordered Rings. A partially ordered ring (po-ring) $\langle A, \leq \rangle$ is lattice-ordered (ℓ -ring) if for all $a, b \in A$,

$$a \lor b = \sup \{a, b\}$$
 and $a \land b = \inf \{a, b\}$

exist in A, where join (or sup) and meet (or inf) are considered with respect to the partial order \leq . Let A be a ℓ -ring and let $a \in A$. Define

(av) $a^+ = a \lor 0, a^- = -a \lor 0$ and $|a| = a^+ \lor a^-,$

called the **positive part**, negative part and absolute value of a in A. It is clear that a^+ , a^- , $|a| \ge 0$. We note the following

Lemma 3.1 ([2], 8.1.4, p. 151) If A is an ℓ -group⁴ and a, b, $x \in A$, then a) $x + (a \land b) = (x + a) \land (x + b)$ and $x + (a \lor b) = (x + a) \lor (x + b)$. b) $-(a \land b) = -a \lor -b$ and $-(a \lor b) = -a \land -b$. c) $a + b = (a \land b) + (a \lor b)$. d) $|a| = a \lor -a = a^{+} + a^{-}$. e) $|a + b| \leq |a| + |b|$. f) ([2], 1.3.2, 1.3.3, p. 22) $a = a^{+} - a^{-}$ and $a^{+} \land a^{-} = 0$. g) ([2], Proposition 1.3.4, p. 22) For $x, y, z \in A$, the following are equivalent: (1) x = y - z and $y \land z = 0$; (2) $y = x^{+}$ and $z = x^{-}$.

B. f-rings. A lattice-ordered ring is called an f-ring if it is isomorphic to a subdirect product of linearly ordered rings ([2], Definition 9.1.1, p. 172). We have

Lemma 3.2 Let A be a ring.

⁴ For the definition and basic properties of ℓ -groups see Chapter 1 of [2]. The laws that follow will be used only for the (commutative) additive group of a ℓ -ring.

ON RINGS OF FRACTIONS OF REDUCED F-RINGS BY NON ZERO-DIVISORS 433

a) ([2], Proposition 9.1.10, p. 175) If A is an f-ring and a, b, x ∈ A, then
(1) x ≥ 0 ⇒ x(a ∨ b) = xa ∨ xb and x(a ∧ b) = xa ∧ xb.
(2) |ab| = |a| · |b|.
(3) a ∧ b = 0 ⇒ ab = 0. (4) a² ≥ 0.

b) ([2], Corollary 9.1.14, p. 176) In a ℓ -ring A, properties (a.1) and (a.2) are equivalent. Moreover, any unitary ring verifying (a.1) is an f-ring.

c) ([2], Theorem 9.3.1, pp. 178-179) If A is a ℓ -ring, the following are equivalent:

- (1) A is a reduced f-ring;
- (2) A is a subdirect product of linearly ordered integral domains.
- (3) For all $a, b \in A$, $|a| \wedge |b| = 0$ iff ab = 0.

If A is a f-ring, we write T_{\sharp} for its natural *partial order*, which, whenever convenient, will be denoted by \leq . Regarding the weak cancellation property, we have the following

Proposition 3.3 Any reduced f-ring satisfies the weak cancellation property.

Proof. If $\langle A, T_{\sharp} \rangle$ is a *f*-ring, by items (a) and (b) of 2.9, cT_{\sharp} is a proper partial order, containing T_{\sharp} . But then Proposition 1.11, p. 33, in [12] entails $T_{\sharp} = cT_{\sharp}$ (see also Proposition 8.15.(a), p. 82 in **FQR**); by 2.9.(e), T_{\sharp} has the wcp.

Henceforth, let $\langle A, T_{\sharp} \rangle$ be a reduced *f*-ring. Notation is as in 1.8. Let *S* be a multiplicative subset of \mathcal{N} (containing 1). Write A_S for the ring of fractions AS^{-1} and

$$T_{\sharp S} = \{ \frac{t}{s^2} \in A_S : t \in T \text{ and } s \in S \}$$

for the preorder defined in Lemma 1.7.(e). Recall that Q(A) is the total ring of fractions of A and we write $Q(T_{\sharp})$ for the extension of T_{\sharp} to Q(A) (cf. 1.8.(c)).⁵

Lemma 3.4 Notation as above, let S be a saturated multiplicative subset of $\mathcal{N}^{.6}$.

a) For all $z \in A$, $z \in S \iff |z| \in S \cap T_{\sharp}$.

b) A_S is reduced and T_{\sharp_S} is a proper ring partial order on A_S , to be written \leq_S .

c) For $f, g \in A$ and $x, y \in S$,

⁵ In [8], Q(A) denotes the *complete* ring of quotients of A. Hence, our notation deviates from that in [8].

⁶ By 1.9, there is no loss of generality in assuming S is saturated, as is the case of \mathcal{N} .

d) The canonical ring morphism, $\iota_S : \langle A, T_{\sharp} \rangle \longrightarrow \langle A_S, T_{\sharp_S} \rangle$, is a p-ring embedding.

Proof. a) Since A is an f-ring, it is clear that $|z| \in T_{\sharp}$. Moreover, items (2) and (4) in 3.2.(a) yield $z^2 = |z^2| = |z|^2$, whence, since S is saturated, we obtain $z \in S$ iff $|z| \in S \cap T_{\sharp}$, as needed.

b) Clearly, A_S is reduced and Lemma 1.7.(e) entails that $T_{\sharp S}$ is a proper preorder of A_S . To see it is a partial order, assume, for $f \in A$ and $x \in S$, that $\frac{f}{x} \in \text{supp}(T_{\sharp S})$; then there are $p, q \in T_{\sharp}$ and $u, v \in S$ such that

(I)
$$\frac{f}{x} = \frac{fx}{x^2} = \frac{p}{u^2}$$
 and $\frac{f}{x} = \frac{fx}{x^2} = -\frac{q}{v^2}$.

The first equation in (I) yields $fxu^2 = px^2 \in T_{\sharp}$, while the second gives $fxv^2 = -qx^2 \in -T_{\sharp}$. Hence, multiplying the former and the latter equations by v^2 and u^2 , respectively, yields $fxu^2v^2 \in \operatorname{supp}(T_{\sharp}) = \{0\}$. Since $xu^2v^2 \in S \subseteq \mathcal{N}$, we conclude f = 0, whence $\frac{f}{x} = 0$, as needed.

c)(1) Suppose there are $p \in T_{\sharp}$ and $u \in S$ such that

(II)
$$\frac{f}{x} = \frac{fx}{x^2} = \frac{p}{u^2}$$

Then, $fxu^2 = px^2 \in T_{\sharp}$; now, 3.3 and the wcp yield (because $u^2 \in T_{\sharp} \cap S \subseteq T_{\sharp} \cap \mathcal{N}$) $fx \in T_{\sharp}$, i.e., $fx \geq 0$. The converse follows immediately from the first equality in (II). Item (2) is immediate from (1) and the fact that T_{\sharp} has the wcp (3.3).

$$(3.i)$$
 Item $(c.1)$ gives

$$\frac{f}{x} \ge_S \frac{g}{x} \iff \frac{f}{x} - \frac{g}{x} \ge_S 0 \iff \frac{f-g}{x} \ge_S 0 \iff fx - gx \ge 0,$$

as needed. Item (ii) follows directly from (i) and (c.2).

(4) Note that $\frac{f}{x} = \frac{fx}{x^2} = \frac{fxy^2}{x^2y^2}$, with a similar computation yielding $\frac{g}{y} = \frac{gyx^2}{x^2y^2}$, and the desired conclusion follows from (3.(*ii*)).

⁷ Recall that \leq is the partial order T_{\sharp} .

Item (d) is an immediate consequence of (c).(2) (or (c.1)).

Lemma 3.5 The p-ring $\langle A_S, T_{\sharp S} \rangle$ is a ℓ -ring and for $f, g \in A$ and $x, y \in S$ we have

(1)
$$\frac{f}{x} \vee \frac{g}{y} = \frac{fxy^2 \vee gyx^2}{x^2y^2};$$
 (2) $\frac{f}{x} \wedge \frac{g}{y} = \frac{fxy^2 \wedge gyx^2}{x^2y^2};$
(3) $\left(\frac{f}{x}\right)^+ = \frac{(fx)^+}{x^2}$ and $\left(\frac{f}{x}\right)^- = \frac{(fx)^-}{x^2};$
(4) $\left|\frac{f}{x}\right| = \frac{|f|}{|x|};$ (5) $\frac{f}{1} \vee \frac{g}{1} = \frac{f \vee g}{1}$ and $\frac{f}{1} \wedge \frac{g}{1} = \frac{f \wedge g}{1}.$

Proof. To see that $\langle A_S, T_{\sharp S} \rangle$ is an ℓ -ring we must check that it is a lattice with respect to the partial order \leq_S , i.e., it suffices to verify (1) and (2).

Proof of (1): Clearly, in A, fxy^2 , $gyx^2 \leq fxy^2 \vee gyx^2$; now, item 3.(*ii*) in 3.4.(c) entails $\frac{f}{x} = \frac{fxy^2}{x^2y^2} \leq_S \frac{fxy^2 \vee gyx^2}{x^2y^2}$, with an analogous relation holding for $\frac{g}{y}$.

Now, for $a \in A$ and $b \in S$, suppose $\frac{f}{x}$, $\frac{g}{y} \leq_S \frac{a}{b}$. Then, 3.4.(c.4) yields (*) $fxb^2 \leq abx^2$ and (**) $gyb^2 \leq aby^2$. Multiplying (*) by y^2 and (**) by x^2 obtains

 $fxy^2b^2 \leq abx^2y^2$ and $gyx^2b^2 \leq abx^2y^2$,

and so, since $\langle A, T_{\sharp} \rangle$ is an *f*-ring, we get, recalling 3.2.(a.1),

(I)
$$(fxy^2 \lor gyx^2)b^2 = fxy^2b^2 \lor gyx^2b^2 \le abx^2y^2.$$

But then (I) and another application of (c.4) in 3.4 entail

$$\frac{fxy^2 \vee gyx^2}{x^2y^2} = \frac{(fxy^2 \vee gyx^2)b^2}{b^2x^2y^2} \le s \quad \frac{abx^2y^2}{b^2x^2y^2} = \frac{a}{b},$$

concluding the proof that $\frac{fxy^2 \vee gyx^2}{x^2y^2}$ is indeed the join of $\frac{f}{x}$ and $\frac{g}{y}$ in the partial order \leq_S . An entirely similar argument, using the second equality in 3.2.(a.1) (to factor out b^2 in the analog of (I)) will establish (2). Statement (3) follows straightforwardly from (1), since for $\xi \in A_S$, $\xi^+ = \xi \vee 0$ and $\xi^- = (-\xi) \vee 0$. For instance,

$$-\left(\frac{f}{x}\right) \vee \frac{0}{1} = \frac{-f}{x} \vee \frac{0}{1} = \frac{-(fx) \vee 0}{x^2} = \frac{(fx)^-}{x^2}.$$

<u>Proof of (4)</u>: By 3.4.(a), for all $x \in S$ we have $|x| \in S \cap T_{\sharp}$, and so the righthand side of the equality is in A_S . Now (3) and 3.2.(a.2), together with the

fact that for all elements u of a ℓ -ring, $|u| = u^+ + u^-$ (3.1.(d)) yield, recalling 3.2.(a.2),

$$\begin{vmatrix} \frac{f}{x} \end{vmatrix} = \left(\frac{f}{x}\right)^{+} + \left(\frac{f}{x}\right)^{-} = \frac{(fx)^{+}}{x^{2}} + \frac{(fx)^{-}}{x^{2}} = \frac{(fx)^{+} + (fx)^{-}}{x^{2}} \\ = \frac{|fx|}{x^{2}} = \frac{|f||x|}{|x|^{2}} = \frac{|f|}{|x|},$$

ending the proof. Item (5) is an immediate consequence of (1) and (2).

Theorem 3.6 (Corollary 10.13, [8]) Let $\langle A, T_{\sharp} \rangle$ be a reduced *f*-ring. If *S* is a multiplicative subset of non zero-divisors in *A*, then $\langle A_S, T_{\sharp_S} \rangle$ is a reduced *f*-ring extension of $\langle A, T_{\sharp} \rangle$. In particular, $\langle Q(A), Q(T_{\sharp}) \rangle$ is a reduced *f*-ring extension of $\langle A, T_{\sharp} \rangle$.

Proof. By 1.9, we may suppose, without loss of generality, that S is saturated. Moreover, Lemmas 3.4.(d) and 3.5 imply that $\langle A_S, T_{\sharp_S} \rangle$ is a reduced *l*-ring extension of $\langle A, T \rangle$. It remains to see that $\langle A_S, T_{\sharp_S} \rangle$ is an *f*-ring; to this end, it suffices, by 3.2.(b), to verify that for all $u, v, w \in A_S$,

(I)
$$u \ge_S 0 \Rightarrow u(v \lor_S w) = (uv \lor_S uw)$$
 and $u(v \land_S w) = (uv \land_S uw)$,

where \vee_S and \wedge_S indicate join and meet in A_S , respectively. We shall treat the first equality; the second can be similarly proven.

Let $u = \frac{f}{x} \geq_S 0$, $v = \frac{g}{y}$ and $w = \frac{h}{z}$, where $x, y, z \in S \subseteq \mathcal{N}$. Note that 3.4.(c.1) entails $fx \geq 0$, and so $fx^3 \geq 0$ (in A). But then, (1) in 3.5.(1) and the fact that A is a f-ring yield,

$$\frac{f}{x} \left(\frac{g}{y} \lor_S \frac{h}{z} \right) = \frac{fx^3}{x^4} \frac{gyz^2 \lor hzy^2}{y^2 z^2} = \frac{fx^3(gyz^2 \lor hzy^2)}{x^4 y^2 z^2}$$
$$= \frac{(fx)(gy)x^2 z^2 \lor (fx)(hz)x^2 y^2}{x^4 y^2 z^2} = \frac{fg}{xy} \lor_S \frac{fh}{xz}$$

as needed. A similar argument yields the second equality in the consequent of (I), and A_S is indeed a *f*-ring. The remaining statement is now clear.

We now show that rings of fractions of weakly real closed and real closed rings by multiplicative sets of non zero-divisors are still weakly real closed and real closed, respectively.

A ring A is a **weakly real closed ring (WRCR)** (introduced in Definition 8.33, p. 166 of **FQR**) if it satisfies

[WRCR 1] : A is reduced;

[WRCR 2] : A^2 is the positive cone of a partial order \leq on A, with which it is a f-ring;

[WRCR 3] : For all $a, b \in A$, $0 \le a \le b \implies b$ divides a^2 .

Corollary 3.7 If A is a WRCR and S is multiplicative subset of the non zero-divisors in A, then $A_S = AS^{-1}$ is a weakly real closed ring.

Proof. Since A is a reduced f-ring with $T_{\sharp} = A^2$, it is clear that $T_{\sharp S} = (A_S)^2$; moreover, by Theorem 3.6, $\langle A_S, (A_S)^2 \rangle$ is a reduced f-ring extension of $\langle A, A^2 \rangle$. It remains to check A_S satisfies [WRCR 3]. By Remark 1.9, we may assume S is saturated. Suppose

(I)
$$0 \leq_S \frac{a}{x} \leq_S \frac{b}{y},$$

with $a, b \in A$ and $x, y \in S$. By items (1) and (4) in Lemma 3.4.(c), (I) is equivalent to

(II) $0 \leq axy^2 \leq byx^2.$

Hence, (II) and axiom [WRCR 3] applied in A yields $\alpha \in A$ such that

(III)
$$a^2x^2y^4 = \alpha \ byx^2,$$

Since $x^4y^4 \in S \cap A^2$, (III) and (c).(3.*ii*) in 3.4 entail,

$$\left(\frac{a}{x}\right)^2 = \frac{a^2}{x^2} = \frac{a^2 x^2 y^4}{x^4 y^4} = \frac{\alpha}{1} \cdot \frac{by x^2}{x^4 y^4} = \frac{\alpha}{x^2 y^2} \cdot \frac{by}{y^2} = \frac{\alpha}{x^2 y^2} \cdot \frac{b}{y},$$

as needed to verify [WRCR 3] in A_S .

Proposition 3.8 If A is a real closed ring and S is a multiplicative subset of non zero-divisors in A, then $A_S = AS^{-1}$ is real closed. In particular, Q(A) is real closed.

Proof. Recall that A is real closed if it is weakly real closed and it satisfies (cf. Remark 8.34, p. 117 in **FQR** and [11])

[RC] For all proper prime ideals $\mathfrak{p} \subseteq A$, the field of fractions of A/\mathfrak{p} is real closed and A/\mathfrak{p} is integrally closed in it.

We begin by recalling certain basic algebraic facts.

Fact 1. Let *D* be a domain and *k* its field of fractions. If *S* is a proper multiplicative set in *D*, then $D_S = DS^{-1}$ is an integral domain and its field of fractions is (canonically isomorphic to) *k*.

Proof. Clearly, D_S is an integral domain; let F be its field of fractions. Up to isomorphism, we may consider $D \subseteq D_S \subseteq F$ and $D \subseteq k$. Since F is a field containing D, we conclude that $k \subseteq F$; on the other hand, because every

element of S is a unit in k, we also have $D_S \subseteq k$, wherefrom we conclude $F \subseteq k$, as needed.⁸

Recall that if A is a ring, Spec(A) is the space of proper prime ideals in A, the **Zariski spectrum** of A. We register the well-known (cf. Proposition 3.11.(iv), p. 41 in [1])

Fact 2. Let A be a ring, S be a multiplicative set in A and $\iota_S : A \longrightarrow A_S = AS^{-1}$ be the canonical morphism. The map $\mathfrak{p} \in \operatorname{Spec}(A_S) \xrightarrow{h} \iota_S^{-1}(\mathfrak{p}) \in \operatorname{Spec}(A)$ is a homeomorphism onto $S = \{\mathfrak{q} \in \operatorname{Spec}(A) : \mathfrak{q} \cap S = \emptyset\}$, with the topology induced by $\operatorname{Spec}(A)$; the inverse of h is given by $\mathfrak{q} \in S \longmapsto \mathfrak{q}S^{-1} = \{\frac{a}{s} \in A_S : a \in \mathfrak{q} \text{ and } s \in S\}$.

Fact 3. (Corollary 3.4, p. 39 in [1]) Let A be a ring, I an ideal in A and S a multiplicative set in A with $I \cap S = \emptyset$. Let $I_S := IS^{-1} = \left\{ \frac{a}{s} \in A_S : a \in I \text{ and } s \in S \right\}$. Then, I_S is a proper ideal in A_S , S/I is a proper multiplicative set in A/I and A_S/I_S is naturally isomorphic to the ring of fractions $(A/I)(S/I)^{-1}$, that is, there is a unique ring isomorphism, $h : A_S/I_S \longrightarrow (A/I)(S/I)^{-1}$, making the following diagram commute

where π is the canonical quotient projection.

Fact 4. (Proposition 5.12, p. 62 in [1]) Let $A \subseteq B$ be rings, C the integral closure of A in B. Let S be a multiplicative subset of A. Then, CS^{-1} is the integral closure of AS^{-1} in BS^{-1} .

Now, let A be a real closed ring and S be a proper multiplicative subset of the non zero-divisors in A. Since we already know (by 3.7) that A_S is weakly real closed, it remains to see that it has property [RC] stated above. Let \mathfrak{p} a proper prime ideal in A_S ; by Fact 2, \mathfrak{p} is of the form $\mathfrak{q}_S = \mathfrak{q}S^{-1}$, for some prime \mathfrak{q} in A, disjoint from S. Since A/\mathfrak{q} is an integral domain, it follows from Facts 1 and 3 that the field of fractions of $A_S/\mathfrak{p} = A_S/\mathfrak{q}_S \approx (A/\mathfrak{q})(S/\mathfrak{q})^{-1}$ is isomorphic to the field of quotients of A/\mathfrak{q} , $k_\mathfrak{q}$, which, by assumption is real

⁸ The universal property of rings of fractions yields a (more) formal proof: $s, t \in S$ and $a, b \in D$, with $b \neq 0$, the map $\frac{a}{s}/\frac{b}{t} \in F \longmapsto (at)(bs)^{-1} \in k$ is an isomorphism over D_S .

closed. Moreover, by Fact 4, $A_S/\mathfrak{p} \approx (A/\mathfrak{q})(S/\mathfrak{q})^{-1}$ is integrally closed in $k_{\mathfrak{q}}(S/\mathfrak{q})^{-1} \approx k_{\mathfrak{q}}$, and A_S is a real closed ring, ending the proof.

References

- M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Publ. Co., London, 1969.
- [2] A. Bigard, K. Keimel, S. Wolfenstein. Groupes et Anneaux Réticulés. Lecture Notes in Math. 608 (1977), Springer-Verlag.
- [3] J. Bochnak, M. Coste, M-F. Roy. Real Algebraic Geometry. Ergeb. Math. 36, Springer-Verlag, Berlin, 1998.
- [4] C. C. Chang, H. J. Keisler. Model Theory. Third edition, Dover Publications, 2012, (unabridged republication of the third edition of the work, North-Holland Publ. Co., Amsterdam, 1990).
- [5] M. Dickmann, F. Miraglia. Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms. Memoirs Amer. Math. Soc. 689, Providence, R.I., 2000.
- [6] M. Dickmann, F. Miraglia. Faithfully Quadratic Rings. Memoirs of the AMS 1128 (November 2015).
- [7] R. Engelking. General Topology. (revised and completed edition), Sigma Series in Pure Math, 6, Heldermann Verlag, Berlin, 1989.
- [8] M. Knebusch, D. Zhang. Convexity, Valuations and Pr
 üfer Extensions in Real Algebra. Documenta Math. 10 (2005), 1-109.
- [9] J. Lambek. Lectures on rings and modules, Blaisdell, Toronto, 1966.
- [10] M. Marshall. Spaces of Orderings and Abstract Real Spectra. Lecture Notes in Mathematics 1636, Springer-Verlag, Berlin, 1996.
- [11] A. Prestel, N. Schwartz. Model Theory of Real Closed Rings. Fields Institute Communications 32 (2002), 261-290.
- [12] N. Schwartz, J. Madden. Semialgebraic Function Rings and Reflectors of Partially Ordered Rings. Lect. Notes in Math. 1712, Springer-Verlag, 1999.

Francisco Miraglia Department of Mathematics University of São Paulo (USP) Rua do Matão, 1010, CEP 05508-090, São Paulo, SP, Brazil *E-mail:* miraglia@ime.usp.br, miraglia@math.univ-paris-diderot.fr

440