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Abstract

Let L be a first order relational language with identity and let Lαβ

be the usual infinitary extension of L. Given an L-structure E and two
substructures F1,F2 of E ; an Lαβ-strong isomorphism of F1 and F2 is
an isomorphism f : F1 → F2 which preserves the intersections of the
Lαβ-definable relations of E (Definition 4.1). For a suitable choice of
α, β; a necessary and sufficient condition for f to be extendable to an
automorphism of E is that f be Lαβ-strong (Theorem 4.2). If every
isomorphism between substructures of E is Lαβ-strong for an adequate
choice of α and β, it follows that E is homogeneous (Theorem 4.5). The
result is used to prove that, for any L-structure E , quantifier elimination
in a suitable language Lαβ implies homogeneity, whatever the cardinality
of E (Corollary 5.3).
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1 Infinitary languages

Let α, β be infinite cardinal numbers, α being a regular cardinal and β ≤ α.
By Lαβ we denote an infinitary first order relational language, whose formulas
are sequences of less than α symbols and which admits sequences of less than
α conjunctions and blocks of sequences of less than β instantiations.

In order to fix our notation, we recall the rules of formation of formulas.
We denote by |A| the cardinal of a set A and by ℘(A) its power set and use
freely the notion of concatenation of sequences. (See [2].)

The symbols of Lαβ are the logical symbols ¬,
∧
, ∃, relation symbols includ-

ing = and symbols of variables. We use the abbreviations ∀,
∨

and the standard
convention for the use of parenthesis. We assume that the cardinal of the set
V of variables is α and that we have a fixed enumeration χ : i ∈ α → xi ∈ V
of V and consider V as an ordered set: xi ≤ xj if and only if i ≤ j. The set of
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relation symbols is denoted by R; to each relation symbol R ∈ R is associated
a natural number ar(R) called the arity of R.

The set of formulas of Lαβ is the smallest set of sequences of symbols of
length less than α satisfying the following conditions:

1.1) If R is a relation symbol of arity n and τ : n → V is a sequence of
variables, then Rτ is a formula;

1.2) If ϕ is a formula, ¬ϕ is a formula;
1.3) If γ < α is an ordinal number and (ϕi)i<γ is a sequence of formulas,

then
∧

(ϕi)i<γ is a formula;
1.4) If ϕ is a formula, γ < β is an ordinal number and η : γ → V is a

sequence of variables, then ∃ηϕ is a formula.
We also use the notation Lαβ to denote the set of formulas of the language

Lαβ. The set V (ϕ) of free variables of a formula ϕ is defined as usual. The arity
of ϕ is by definition the ordinal number of V (ϕ) endowed with the order induced
by the order of V . If ϕ is a formula of arity γ, we denote by σϕ : γ → V (ϕ)
the order preserving bijection. The language Lωω is the standard finitary first
order relational language and will be denoted simply by L.

2 Relational structures

Given a set E and an ordinal γ, a γ-tuple of points of E is a sequence p : γ → E
of elements of E defined on γ. We refer to γ-tuples also as γ-points or points
of arity γ defined on E. Denote by Eγ the set of all γ-points defined on E; a
relation of arity γ is a subset of Eγ .

Given an Lαβ-language and a non empty set E, an Lαβ-relational structure
E defined on E is a pair (E,RE) such that RE is a map that assigns to each
predicate symbol R ∈ R of arity n a relation RE of arity n defined on E; E is
the domain of E .

If a finitary relational language L has been fixed and given cardinals α, β,
α regular and β ≤ α, we shall denote by Lαβ the infinitary language which has
the same predicate symbols as L and whose ordered set of variables extend the
set of variables of L, that is , if xi , i < α, are the variables of Lαβ, then xi,
i < ω, are the variables of L. We call Lαβ the extended language of L. If E is
an L-structure, then E is also an Lαβ-structure.

An interpretation of the variables of an Lαβ-structure E is a map I : V → E.
We recall the notion of an interpretation I of variables satisfying a formula ϕ
in an Lαβ-structure E , denoted by I �E ϕ, using our notation:

2.1) If ϕ is Rτ , then I �E ϕ⇔ I ◦ τ ∈ RE ;
2.2) If ϕ is ¬ψ, then I �E ϕ⇔ I 2E ψ (I does not satisfy ψ in E);
2.3) If ϕ is

∧
(ϕi)i<γ , then I �E ϕ⇔ I �E ϕi for all i < γ;
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2.4) If ϕ is ∃ηψ, then I �E ϕ if and only if there exists I ′ : V → E such
that I ′ �E ψ and I(xi) = I ′(xi) for every xi ∈ V (ϕ), that is, I ◦ σϕ = I ′ ◦ σϕ.

Let ϕ ∈ Lαβ be a formula of arity γ of an Lαβ-structure E . The relation
[ϕ]E defined by ϕ in the structure E is the set of all points p ∈ Eγ for which
there exists an interpretation I of the variables satisfying ϕ and p = I ◦ σϕ,
that is:

[ϕ]E = {I ◦ σϕ ∈ Eγ : I �E ϕ}.

A relation R defined on E is definable in the Lαβ-structure E if there exists a
formula ϕ ∈ Lαβ such that R = [ϕ]E .

3 Invariance and definability

Let E be an L-structure over the domain E and denote by G the group of
automorphisms of E and by δ̄ the cardinal of the set ℘(δ) where δ = |E|.

The action of G on E extends to an action of G on Eγ , where γ is any
ordinal. If g ∈ G and p ∈ Eγ , g · p = g ◦ p. For any choice of α, β, any relation
definable in the extended Lαβ-structure E is invariant under G.

Theorem 3.1 Let p ∈ Eδ be a bijection of δ onto E. The orbit G · p of p
under the action of G is the intersection S of all Lδ̄δ̄-definable relations that
contains p.

Proof. Since S is invariant by G and p ∈ S, it follows that G · p ⊂ S.
Let N ⊂ Eδ be the set of all bijections of δ onto E. The following formula

of Lδ̄δ̄, where y is a variable distinct from all xi, i < δ, defines N ,

∀y[
∨
i<δ

(y = xi)] ∧ [
∧

i,j<δ,i 6=j
(xi 6= xj)].

Hence S ⊂ N .
Let q be any point of S and consider the bijection g = q · p−1 : E → E. We

have g · p = q; we shall prove that g ∈ G.
Since δ̄ is a regular cardinal, |Lδ̄δ̄| < δ̄. Hence, the power of the set of

definable relations of arity ≤ δ in the Lδ̄δ̄-structure E is less then δ̄, yielding
that S is definable in the Lδ̄δ̄-structure. Let ϕ ∈ Lδ̄δ̄ be a formula that defines S
and assume that the free variables of ϕ are (xi)i<δ. Let R be a relation symbol
of L of arity n and denote also by R ⊂ En the relation represented by the
symbol R. Given a point a ∈ R, we define the map η = (χ|δ) ◦ p−1 ◦ a : n→ V
and consider the following formula of Lδ̄δ̄:

ψ = ϕ ∧Rη.
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Let I : V → E be an interpretation of variables satisfying, for i < δ, I(xi) = pi.
Since σϕ = χ|δ, we have I ◦ σϕ = p and from p ∈ [ϕ]E it follows that I |=E ϕ.
From I ◦ η = p ◦ (χ|δ)−1 ◦ (χ|δ) ◦ p−1 ◦ a ∈ R it follows that I |=E Rη; hence,
I |=E ψ. From σψ = χ|δ and p = I ◦ σψ we have that p ∈ [ψ]E . Thus, there
exists I ′ : V → E such that q = I ′ ◦ χ|δ and I ′ ◦ η = I ′ ◦ (χ|δ) ◦ p−1 ◦ a ∈ R;
hence, q ◦ p−1 ◦ a ∈ R or, equivalently, g · a ∈ R. This proves that g · R ⊂ R;
interchanging the rules of p and q we have for g−1 = p−1 ◦ q, g−1 · R ⊂ R.
Therefore, g · R = R. Since R is any primitive relation of E , this proves that
g ∈ G. Since q is any point of S, we have G · p ⊃ S, completing the proof that
G · p = S. �

Corollary 3.2 Let p : γ → E, γ ≤ δ, be an injection. The orbit G · p ⊂ Eγ of
p is Lδ̄δ̄-definable.

Proof. If γ = δ and p : δ → E is a bijection, by theorem 3.1 the orbit G · p is
Lδ̄δ̄-definable. If γ < δ, the injection p can be extended to a bijection q : δ → E.
Let ψ ∈ Lδ̄δ̄ be a formula which defines G · q and assume that the free vari-
ables of ψ are (xi)i<δ. Then, the formula ∃(xi)γ≤i<δ ψ defines the orbit G ·p. �

Remark 3.3 Based on corollary 3.2, it is not difficult to prove that the orbit
of any point p ∈ Eγ , γ ≤ δ is Lδ̄δ̄-definable. Since any relation of Eγ, invariant
under the action of G is a union of orbits of G, it follows that every invariant
relation of E of arity γ ≤ δ is Lδ̄δ̄-definable. See [4] and [1].

4 Strong isomorphisms and homogeneity

Let Ei be L-structures defined on domains Ei; and let Fi be substructures of
Ei defined on domains Fi ⊂ Ei, such that |Fi| < |Ei|, i = 1, 2. We consider Ei
also as Lαβ-structures where Lαβ is the extended language of L.

If γ is an ordinal number, for any map f : E1 → E2, we denote by fγ :
Eγ1 → Eγ2 the natural extension of f to Eγ1 ; if p ∈ Eγ1 , fγ(p) = f ◦ p.

Definition 4.1 An isomorphism f : F1 → F2 of the L-structures F1 and F2

is Lαβ-strong if for all formulas ϕ ∈ Lαβ of arity γ we have

fγ([ϕ]E1 ∩ F
γ
1 ) = [ϕ]E2 ∩ F

γ
2 (Ξ)

If f is the restriction to F1 of an isomorphism f̃ : E1 → E2 of the L-
structures E1 and E2, then f is Lαβ-strong for any choice of α, β.
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Theorem 4.2 Let Ei be isomorphic L-structures with domains Ei, and let Fi
be a substructure of Ei, with domains Fi, i = 1, 2. Denote by δ̄ the cardinal
of the set ℘(δ) where δ = |E1| = |E2|. If |F1| < δ, then any Lδ̄δ̄-strong
isomorphism of F1 and F2 can be extended to an isomorphism of E1 and E2.

Proof. Let f : F1 → F2 be an Lδ̄δ̄-strong isomorphism of F1 and F2.
Consider an isomorphism h : E1 → E2 of E1 and E2 and a bijection p : γ → F1,
where γ = |F1|. We extended p to a bijection q : δ → E1. By theorem 3.1,
there are formulas ϕ, ϕ̃ ∈ Lδ̄δ̄ which define the orbits G · p,G · q of p and q
under the action of the group G of automorphisms of E1. We assume that
V (ϕ) = {xi : i < γ} and V (ϕ̃) = {xi : i < δ}. Consider the following formula
of Lδ̄δ̄:

ψ = ∃(xi)i∈δ−γ(ϕ ∧ ϕ̃).

Clearly p ∈ [ψ]E1 . By definition of strong isomorphism, we have:

fγ([ψ]E1 ∩ F
γ
1 ) = [ψ]E2 ∩ F

γ
2 .

It follows that fγ(p) ∈ [ψ]E2 . Hence, for each i, γ ≤ i < δ, there ex-
ists c(i) ∈ E2 verifying the condition that the sequence r2 : δ → E2 de-
fined by r2(i) = f(q(i)) if i < γ and r2(i) = c(i) if γ ≤ i < δ belongs
to [ϕ̃]E2 . Since hδ maps [ϕ̃]E1 onto [ϕ̃]E2 , there exists r1 ∈ [ϕ̃]E1 such that
hδ(r1) = r2. By definition of ϕ̃, there exists g ∈ G satisfying g · q = r1.
Consider the isomorphism f̃ = h ◦ g : E1 → E2 of E1 and E2. For ev-
ery element a ∈ F1, there exists i < γ verifying p(i) = q(i) = a. Then,
f̃(a) = h(g(a)) = h(g(q(i))) = h(r1(i)) = r2(i) = f(q(i)) = f(a). Therefore, f̃
extends f . �

Definition 4.3 Let E be an L-structure defined on the domain E, assume
|E| = δ. We say that E has the property of strong isomorphisms if every
isomorphism between substructures of E is Lδ̄δ̄-strong.

Definition 4.4 Let E be an L-structure defined on the domain E and assume
that |E| = δ. E is homogeneous if any isomorphism of substructures of E, of
cardinal less than δ, can be extended to an automorphism of E.

Theorem 4.5 An L-structure E has the property of strong isomorphism if and
only if E is homogeneous.

Proof. Immediate from theorem 4.2. �

Theorem 4.5 states a different form to characterize homogeneous L-structures
considering infinitary entensions of L.
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5 Quantifier elimination and categoricity

Let E be an L-structure and consider two formulas ϕ and ψ of the extended
language Lαβ. We say that ϕ and ψ are equivalent in the Lαβ-structure E (or
E-equivalent) if [ϕ]E = [ψ]E .

We say that E has quantifier elimination in Lαβ if every formula of Lαβ
which has free variables is E-equivalent to an Lαβ-formula without quantifiers.

Theorem 5.1 Let Ei be isomorphic L-structures, i = 1, 2. Given cardinals
α, β, assume that E1 has quantifier elimination in Lαβ. Then, every isomor-
phism f : F1 → F2 of substructures Fi of Ei, i = 1, 2, is Lαβ-strong.

Proof. By definition of substructures, equality (Ξ), see definition 4.1, holds
for every atomic formula ϕ of L. It is easily proved that if (Ξ) holds for a
formula ϕ, then it holds also for ¬ϕ. Let ϕi, i < γ < α be a sequence of
quantifiers-free formulas for which (Ξ) holds; we shall prove below that (Ξ)
also holds for

∧
(ϕi)i<γ and

∨
(ϕi)i<γ .

To prove that (Ξ) holds for ϕ =
∧

(ϕi)i<γ , denote by Vi the set of free
variables of ϕi and by V =

⋃
i<γ Vi the set of free variables of ϕ. For each

i < γ, consider the formula

ϕ̃i = ϕi ∧
∧

xk∈V−Vi

xk = xk,

and assume that the arity of ϕ is γ0. It is easily verified that (Ξ) holds for ϕ̃i.
Then, we have:

hγ([ϕ]E1 ∩ F
γ0
1 ) = hγ0([

∧
i<γ ϕi]E1 ∩ F

γ0
1 )

= hγ0(
⋂
i<γ([ϕ̃i]E1) ∩ F γ01 )

= hγ0(
⋂
i<γ([ϕ̃i]E1 ∩ F

γ0
1 ))

=
⋂
i<γ h

γ0([ϕ̃i]E1 ∩ F
γ0
1 )

=
⋂
i<γ([ϕ̃i]E2 ∩ F

γ0
2 )

= (
⋂
i<γ([ϕ̃i]E2)) ∩ F γ02

= [
∧
i<γ ϕi]E2 ∩ F

γ0
2

= [ϕ]E2 ∩ F
γ0
2 .

The proof for
∨

(ϕi)i<γ is similar and will be ommited. �

The next theorem is a model-theoretical generalization of well known the-
orems of theories of algebraically closed fields and differentially closed fields of
characteristic zero. For instance, the Steinitz’s isomorphism theorem: Let K
and K ′ be fields, and let L, L′ be, respectively, algebraic closures of K and K ′.
Then, every isomorphism from K to K ′ is extendible to an isomorphism from
L to L′.
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Theorem 5.2 Let Ei be isomorphic L-structures over domains Ei, i = 1, 2;
that have quantifier elimination in Lδ̄δ̄, δ̄ = |℘(E1)|. Assume that Fi is a
substructure of Ei whose domain Fi satisfies |Fi| < |Ei|, i = 1, 2. Any isomor-
phism of substructures F1 and F2 admits an extension to an isomorphism of
E1 and E2.

Proof. Theorem 5.2 is a straightforward consequence of the theorems 4.2
and 5.1. �

Corollary 5.3 An L-structure E is homogeneous if it has quantifier elimina-
tion in Lδ̄δ̄, δ̄ = |℘(E)|.

We recall that an L-structure E is categorical if any L-structure E ′, |E| =
|E′|, which is elementary equivalent to E , is isomorphic to E .

The following theorem is easily proved using compacity. If the cardinality
of E is ω, the proof can be found in [3], corollary 3.1.3 and proposition 3.1.6.

Theorem 5.4 Let E be a homogeneous L-structure. If either |R| is finite or
|R| ≤ |E| and E is categorical, then E has quantifier elimination.

The theorem bellow is a consequence of theorems 4.5 and 5.4.

Theorem 5.5 Let E be an L-structure. If either |R| is finite or |R| ≤ |E| and
E is categorical, then the following statements are equivalent:

1. E has quantifier elimination in Lδ̄δ̄, δ̄ = |℘(E)|;
2. E has the property of strong isomorphisms;
3. E is homogeneous.

6 Final remarks

As far as the authors know, the notion of strong isomorphisms, stated in a set
theoretical way, is due to J. S. e Silva. See [5].

Although Silva did not have the notion of infinitary languages, his result in
[5], pp 112-113 is, in essence, equivalent to theorem 4.2. See also [1], theorem
7.1 p 23.
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