§∀JL

On Extensions of Isomorphisms of Substructures

Edelcio G. de Souza and Alexandre A. M. Rodrigues (in memoriam)

Abstract

Let \mathcal{L} be a first order relational language with identity and let $\mathcal{L}_{\alpha\beta}$ be the usual infinitary extension of \mathcal{L} . Given an \mathcal{L} -structure \mathcal{E} and two substructures $\mathcal{F}_1, \mathcal{F}_2$ of \mathcal{E} ; an $\mathcal{L}_{\alpha\beta}$ -strong isomorphism of \mathcal{F}_1 and \mathcal{F}_2 is an isomorphism $f : \mathcal{F}_1 \to \mathcal{F}_2$ which preserves the intersections of the $\mathcal{L}_{\alpha\beta}$ -definable relations of \mathcal{E} (Definition 4.1). For a suitable choice of α, β ; a necessary and sufficient condition for f to be extendable to an automorphism of \mathcal{E} is that f be $\mathcal{L}_{\alpha\beta}$ -strong (Theorem 4.2). If every isomorphism between substructures of \mathcal{E} is $\mathcal{L}_{\alpha\beta}$ -strong for an adequate choice of α and β , it follows that \mathcal{E} is homogeneous (Theorem 4.5). The result is used to prove that, for any \mathcal{L} -structure \mathcal{E} , quantifier elimination in a suitable language $\mathcal{L}_{\alpha\beta}$ implies homogeneity, whatever the cardinality of \mathcal{E} (Corollary 5.3).

Keywords: infinitary languages, strong isomorphisms, homogeneous structures.

1 Infinitary languages

Let α, β be infinite cardinal numbers, α being a regular cardinal and $\beta \leq \alpha$. By $\mathcal{L}_{\alpha\beta}$ we denote an *infinitary first order relational language*, whose formulas are sequences of less than α symbols and which admits sequences of less than α conjunctions and blocks of sequences of less than β instantiations.

In order to fix our notation, we recall the rules of formation of formulas. We denote by |A| the cardinal of a set A and by $\wp(A)$ its power set and use freely the notion of concatenation of sequences. (See [2].)

The symbols of $\mathcal{L}_{\alpha\beta}$ are the logical symbols \neg, \bigwedge, \exists , relation symbols including = and symbols of variables. We use the abbreviations \forall, \bigvee and the standard convention for the use of parenthesis. We assume that the cardinal of the set V of variables is α and that we have a fixed enumeration $\chi : i \in \alpha \to x_i \in V$ of V and consider V as an ordered set: $x_i \leq x_j$ if and only if $i \leq j$. The set of relation symbols is denoted by \mathcal{R} ; to each relation symbol $R \in \mathcal{R}$ is associated a natural number ar(R) called the *arity* of R.

The set of *formulas* of $\mathcal{L}_{\alpha\beta}$ is the smallest set of sequences of symbols of length less than α satisfying the following conditions:

1.1) If R is a relation symbol of arity n and $\tau : n \to V$ is a sequence of variables, then $R\tau$ is a formula;

1.2) If φ is a formula, $\neg \varphi$ is a formula;

1.3) If $\gamma < \alpha$ is an ordinal number and $(\varphi_i)_{i < \gamma}$ is a sequence of formulas, then $\bigwedge (\varphi_i)_{i < \gamma}$ is a formula;

1.4) If φ is a formula, $\gamma < \beta$ is an ordinal number and $\eta : \gamma \to V$ is a sequence of variables, then $\exists \eta \varphi$ is a formula.

We also use the notation $\mathcal{L}_{\alpha\beta}$ to denote the set of formulas of the language $\mathcal{L}_{\alpha\beta}$. The set $V(\varphi)$ of free variables of a formula φ is defined as usual. The *arity* of φ is by definition the ordinal number of $V(\varphi)$ endowed with the order induced by the order of V. If φ is a formula of arity γ , we denote by $\sigma_{\varphi} : \gamma \to V(\varphi)$ the order preserving bijection. The language $\mathcal{L}_{\omega\omega}$ is the standard finitary first order relational language and will be denoted simply by \mathcal{L} .

2 Relational structures

Given a set E and an ordinal γ , a γ -tuple of points of E is a sequence $p: \gamma \to E$ of elements of E defined on γ . We refer to γ -tuples also as γ -points or points of arity γ defined on E. Denote by E^{γ} the set of all γ -points defined on E; a relation of arity γ is a subset of E^{γ} .

Given an $\mathcal{L}_{\alpha\beta}$ -language and a non empty set E, an $\mathcal{L}_{\alpha\beta}$ -relational structure \mathcal{E} defined on E is a pair $(E, \mathcal{R}_{\mathcal{E}})$ such that $\mathcal{R}_{\mathcal{E}}$ is a map that assigns to each predicate symbol $R \in \mathcal{R}$ of arity n a relation $R_{\mathcal{E}}$ of arity n defined on E; E is the domain of \mathcal{E} .

If a finitary relational language \mathcal{L} has been fixed and given cardinals α, β , α regular and $\beta \leq \alpha$, we shall denote by $\mathcal{L}_{\alpha\beta}$ the infinitary language which has the same predicate symbols as \mathcal{L} and whose ordered set of variables extend the set of variables of \mathcal{L} , that is , if x_i , $i < \alpha$, are the variables of $\mathcal{L}_{\alpha\beta}$, then x_i , $i < \omega$, are the variables of \mathcal{L} . We call $\mathcal{L}_{\alpha\beta}$ the extended language of \mathcal{L} . If \mathcal{E} is an \mathcal{L} -structure, then \mathcal{E} is also an $\mathcal{L}_{\alpha\beta}$ -structure.

An interpretation of the variables of an $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} is a map $\mathcal{I} : V \to E$. We recall the notion of an interpretation \mathcal{I} of variables satisfying a formula φ in an $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} , denoted by $\mathcal{I} \vDash_{\mathcal{E}} \varphi$, using our notation:

2.1) If φ is $R\tau$, then $\mathcal{I} \vDash_{\mathcal{E}} \varphi \Leftrightarrow \mathcal{I} \circ \tau \in R_{\mathcal{E}}$;

2.2) If φ is $\neg \psi$, then $\mathcal{I} \vDash_{\mathcal{E}} \varphi \Leftrightarrow \mathcal{I} \nvDash_{\mathcal{E}} \psi$ (\mathcal{I} does not satisfy ψ in \mathcal{E});

2.3) If φ is $\bigwedge(\varphi_i)_{i < \gamma}$, then $\mathcal{I} \vDash_{\mathcal{E}} \varphi \Leftrightarrow \mathcal{I} \vDash_{\mathcal{E}} \varphi_i$ for all $i < \gamma$;

2.4) If φ is $\exists \eta \psi$, then $\mathcal{I} \vDash_{\mathcal{E}} \varphi$ if and only if there exists $\mathcal{I}' : V \to E$ such that $\mathcal{I}' \vDash_{\mathcal{E}} \psi$ and $\mathcal{I}(x_i) = \mathcal{I}'(x_i)$ for every $x_i \in V(\varphi)$, that is, $\mathcal{I} \circ \sigma_{\varphi} = \mathcal{I}' \circ \sigma_{\varphi}$.

Let $\varphi \in \mathcal{L}_{\alpha\beta}$ be a formula of arity γ of an $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} . The relation $[\varphi]_{\mathcal{E}}$ defined by φ in the structure \mathcal{E} is the set of all points $p \in E^{\gamma}$ for which there exists an interpretation \mathcal{I} of the variables satisfying φ and $p = \mathcal{I} \circ \sigma_{\varphi}$, that is:

$$[\varphi]_{\mathcal{E}} = \{ \mathcal{I} \circ \sigma_{\varphi} \in E^{\gamma} : \mathcal{I} \vDash_{\mathcal{E}} \varphi \}.$$

A relation R defined on E is *definable* in the $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} if there exists a formula $\varphi \in \mathcal{L}_{\alpha\beta}$ such that $R = [\varphi]_{\mathcal{E}}$.

3 Invariance and definability

Let \mathcal{E} be an \mathcal{L} -structure over the domain E and denote by G the group of automorphisms of \mathcal{E} and by $\overline{\delta}$ the cardinal of the set $\wp(\delta)$ where $\delta = |E|$.

The action of G on E extends to an action of G on E^{γ} , where γ is any ordinal. If $g \in G$ and $p \in E^{\gamma}$, $g \cdot p = g \circ p$. For any choice of α, β , any relation definable in the extended $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} is invariant under G.

Theorem 3.1 Let $p \in E^{\delta}$ be a bijection of δ onto E. The orbit $G \cdot p$ of p under the action of G is the intersection S of all $\mathcal{L}_{\overline{\delta}\overline{\delta}}$ -definable relations that contains p.

Proof. Since S is invariant by G and $p \in S$, it follows that $G \cdot p \subset S$.

Let $N \subset E^{\delta}$ be the set of all bijections of δ onto E. The following formula of $\mathcal{L}_{\bar{\delta}\bar{\delta}}$, where y is a variable distinct from all $x_i, i < \delta$, defines N,

$$\forall y [\bigvee_{i < \delta} (y = x_i)] \land [\bigwedge_{i,j < \delta, i \neq j} (x_i \neq x_j)].$$

Hence $S \subset N$.

Let q be any point of S and consider the bijection $g = q \cdot p^{-1} : E \to E$. We have $g \cdot p = q$; we shall prove that $g \in G$.

Since $\overline{\delta}$ is a regular cardinal, $|\mathcal{L}_{\overline{\delta}\overline{\delta}}| < \overline{\delta}$. Hence, the power of the set of definable relations of arity $\leq \delta$ in the $\mathcal{L}_{\overline{\delta}\overline{\delta}}$ -structure \mathcal{E} is less then $\overline{\delta}$, yielding that S is definable in the $\mathcal{L}_{\overline{\delta}\overline{\delta}}$ -structure. Let $\varphi \in \mathcal{L}_{\overline{\delta}\overline{\delta}}$ be a formula that defines S and assume that the free variables of φ are $(x_i)_{i<\delta}$. Let R be a relation symbol of \mathcal{L} of arity n and denote also by $R \subset E^n$ the relation represented by the symbol R. Given a point $a \in R$, we define the map $\eta = (\chi|\delta) \circ p^{-1} \circ a : n \to V$ and consider the following formula of $\mathcal{L}_{\overline{\delta}\overline{\delta}}$:

$$\psi = \varphi \wedge R\eta.$$

Let $\mathcal{I}: V \to E$ be an interpretation of variables satisfying, for $i < \delta$, $\mathcal{I}(x_i) = p_i$. Since $\sigma_{\varphi} = \chi | \delta$, we have $\mathcal{I} \circ \sigma_{\varphi} = p$ and from $p \in [\varphi]_{\mathcal{E}}$ it follows that $\mathcal{I} \models_{\mathcal{E}} \varphi$. From $\mathcal{I} \circ \eta = p \circ (\chi | \delta)^{-1} \circ (\chi | \delta) \circ p^{-1} \circ a \in R$ it follows that $\mathcal{I} \models_{\mathcal{E}} R\eta$; hence, $\mathcal{I} \models_{\mathcal{E}} \psi$. From $\sigma_{\psi} = \chi | \delta$ and $p = \mathcal{I} \circ \sigma_{\psi}$ we have that $p \in [\psi]_{\mathcal{E}}$. Thus, there exists $\mathcal{I}': V \to E$ such that $q = \mathcal{I}' \circ \chi | \delta$ and $\mathcal{I}' \circ \eta = \mathcal{I}' \circ (\chi | \delta) \circ p^{-1} \circ a \in R$; hence, $q \circ p^{-1} \circ a \in R$ or, equivalently, $g \cdot a \in R$. This proves that $g \cdot R \subset R$; interchanging the rules of p and q we have for $g^{-1} = p^{-1} \circ q$, $g^{-1} \cdot R \subset R$. Therefore, $g \cdot R = R$. Since R is any primitive relation of \mathcal{E} , this proves that $g \in G$. Since q is any point of S, we have $G \cdot p \supset S$, completing the proof that $G \cdot p = S$.

Corollary 3.2 Let $p: \gamma \to E, \gamma \leq \delta$, be an injection. The orbit $G \cdot p \subset E^{\gamma}$ of p is $\mathcal{L}_{\overline{\delta}\overline{\delta}}$ -definable.

Proof. If $\gamma = \delta$ and $p: \delta \to E$ is a bijection, by theorem 3.1 the orbit $G \cdot p$ is $\mathcal{L}_{\bar{\delta}\bar{\delta}}$ -definable. If $\gamma < \delta$, the injection p can be extended to a bijection $q: \delta \to E$. Let $\psi \in \mathcal{L}_{\bar{\delta}\bar{\delta}}$ be a formula which defines $G \cdot q$ and assume that the free variables of ψ are $(x_i)_{i < \delta}$. Then, the formula $\exists (x_i)_{\gamma \leq i < \delta} \psi$ defines the orbit $G \cdot p$.

Remark 3.3 Based on corollary 3.2, it is not difficult to prove that the orbit of any point $p \in E^{\gamma}, \gamma \leq \delta$ is $\mathcal{L}_{\bar{\delta}\bar{\delta}}$ -definable. Since any relation of E^{γ} , invariant under the action of G is a union of orbits of G, it follows that every invariant relation of \mathcal{E} of arity $\gamma \leq \delta$ is $\mathcal{L}_{\bar{\delta}\bar{\delta}}$ -definable. See [4] and [1].

4 Strong isomorphisms and homogeneity

Let \mathcal{E}_i be \mathcal{L} -structures defined on domains E_i ; and let \mathcal{F}_i be substructures of \mathcal{E}_i defined on domains $F_i \subset E_i$, such that $|F_i| < |E_i|$, i = 1, 2. We consider \mathcal{E}_i also as $\mathcal{L}_{\alpha\beta}$ -structures where $\mathcal{L}_{\alpha\beta}$ is the extended language of \mathcal{L} .

If γ is an ordinal number, for any map $f : E_1 \to E_2$, we denote by $f^{\gamma} : E_1^{\gamma} \to E_2^{\gamma}$ the natural extension of f to E_1^{γ} ; if $p \in E_1^{\gamma}$, $f^{\gamma}(p) = f \circ p$.

Definition 4.1 An isomorphism $f : F_1 \to F_2$ of the \mathcal{L} -structures \mathcal{F}_1 and \mathcal{F}_2 is $\mathcal{L}_{\alpha\beta}$ -strong if for all formulas $\varphi \in \mathcal{L}_{\alpha\beta}$ of arity γ we have

$$f^{\gamma}([\varphi]_{\mathcal{E}_1} \cap F_1^{\gamma}) = [\varphi]_{\mathcal{E}_2} \cap F_2^{\gamma} \tag{\Xi}$$

If f is the restriction to F_1 of an isomorphism $\tilde{f} : E_1 \to E_2$ of the \mathcal{L} -structures \mathcal{E}_1 and \mathcal{E}_2 , then f is $\mathcal{L}_{\alpha\beta}$ -strong for any choice of α, β .

Theorem 4.2 Let \mathcal{E}_i be isomorphic \mathcal{L} -structures with domains E_i , and let \mathcal{F}_i be a substructure of \mathcal{E}_i , with domains F_i , i = 1, 2. Denote by $\overline{\delta}$ the cardinal of the set $\wp(\delta)$ where $\delta = |E_1| = |E_2|$. If $|F_1| < \delta$, then any $\mathcal{L}_{\overline{\delta}\overline{\delta}}$ -strong isomorphism of \mathcal{F}_1 and \mathcal{F}_2 can be extended to an isomorphism of \mathcal{E}_1 and \mathcal{E}_2 .

Proof. Let $f : F_1 \to F_2$ be an $\mathcal{L}_{\bar{\delta}\bar{\delta}}$ -strong isomorphism of \mathcal{F}_1 and \mathcal{F}_2 . Consider an isomorphism $h : E_1 \to E_2$ of \mathcal{E}_1 and \mathcal{E}_2 and a bijection $p : \gamma \to F_1$, where $\gamma = |F_1|$. We extended p to a bijection $q : \delta \to E_1$. By theorem 3.1, there are formulas $\varphi, \tilde{\varphi} \in \mathcal{L}_{\bar{\delta}\bar{\delta}}$ which define the orbits $G \cdot p, G \cdot q$ of p and qunder the action of the group G of automorphisms of \mathcal{E}_1 . We assume that $V(\varphi) = \{x_i : i < \gamma\}$ and $V(\tilde{\varphi}) = \{x_i : i < \delta\}$. Consider the following formula of $\mathcal{L}_{\bar{\delta}\bar{\delta}}$:

$$\psi = \exists (x_i)_{i \in \delta - \gamma} (\varphi \land \tilde{\varphi}).$$

Clearly $p \in [\psi]_{\mathcal{E}_1}$. By definition of strong isomorphism, we have:

$$f^{\gamma}([\psi]_{\mathcal{E}_1} \cap F_1^{\gamma}) = [\psi]_{\mathcal{E}_2} \cap F_2^{\gamma}.$$

It follows that $f^{\gamma}(p) \in [\psi]_{\mathcal{E}_2}$. Hence, for each $i, \gamma \leq i < \delta$, there exists $c(i) \in E_2$ verifying the condition that the sequence $r_2 : \delta \to E_2$ defined by $r_2(i) = f(q(i))$ if $i < \gamma$ and $r_2(i) = c(i)$ if $\gamma \leq i < \delta$ belongs to $[\tilde{\varphi}]_{\mathcal{E}_2}$. Since h^{δ} maps $[\tilde{\varphi}]_{\mathcal{E}_1}$ onto $[\tilde{\varphi}]_{\mathcal{E}_2}$, there exists $r_1 \in [\tilde{\varphi}]_{\mathcal{E}_1}$ such that $h^{\delta}(r_1) = r_2$. By definition of $\tilde{\varphi}$, there exists $g \in G$ satisfying $g \cdot q = r_1$. Consider the isomorphism $\tilde{f} = h \circ g : E_1 \to E_2$ of \mathcal{E}_1 and \mathcal{E}_2 . For every element $a \in F_1$, there exists $i < \gamma$ verifying p(i) = q(i) = a. Then, $\tilde{f}(a) = h(g(a)) = h(g(q(i))) = h(r_1(i)) = r_2(i) = f(q(i)) = f(a)$. Therefore, \tilde{f} extends f.

Definition 4.3 Let \mathcal{E} be an \mathcal{L} -structure defined on the domain E, assume $|E| = \delta$. We say that \mathcal{E} has the property of strong isomorphisms if every isomorphism between substructures of \mathcal{E} is $\mathcal{L}_{\bar{\delta}\bar{\delta}}$ -strong.

Definition 4.4 Let \mathcal{E} be an \mathcal{L} -structure defined on the domain E and assume that $|E| = \delta$. \mathcal{E} is homogeneous if any isomorphism of substructures of \mathcal{E} , of cardinal less than δ , can be extended to an automorphism of \mathcal{E} .

Theorem 4.5 An \mathcal{L} -structure \mathcal{E} has the property of strong isomorphism if and only if \mathcal{E} is homogeneous.

Proof. Immediate from theorem 4.2.

Theorem 4.5 states a different form to characterize homogeneous \mathcal{L} -structures considering infinitary entensions of \mathcal{L} .

5 Quantifier elimination and categoricity

Let \mathcal{E} be an \mathcal{L} -structure and consider two formulas φ and ψ of the extended language $\mathcal{L}_{\alpha\beta}$. We say that φ and ψ are equivalent in the $\mathcal{L}_{\alpha\beta}$ -structure \mathcal{E} (or \mathcal{E} -equivalent) if $[\varphi]_{\mathcal{E}} = [\psi]_{\mathcal{E}}$.

We say that \mathcal{E} has quantifier elimination in $\mathcal{L}_{\alpha\beta}$ if every formula of $\mathcal{L}_{\alpha\beta}$ which has free variables is \mathcal{E} -equivalent to an $\mathcal{L}_{\alpha\beta}$ -formula without quantifiers.

Theorem 5.1 Let \mathcal{E}_i be isomorphic \mathcal{L} -structures, i = 1, 2. Given cardinals α, β , assume that \mathcal{E}_1 has quantifier elimination in $\mathcal{L}_{\alpha\beta}$. Then, every isomorphism $f: F_1 \to F_2$ of substructures \mathcal{F}_i of \mathcal{E}_i , i = 1, 2, is $\mathcal{L}_{\alpha\beta}$ -strong.

Proof. By definition of substructures, equality (Ξ), see definition 4.1, holds for every atomic formula φ of \mathcal{L} . It is easily proved that if (Ξ) holds for a formula φ , then it holds also for $\neg \varphi$. Let φ_i , $i < \gamma < \alpha$ be a sequence of quantifiers-free formulas for which (Ξ) holds; we shall prove below that (Ξ) also holds for $\bigwedge(\varphi_i)_{i < \gamma}$ and $\bigvee(\varphi_i)_{i < \gamma}$.

To prove that (Ξ) holds for $\varphi = \bigwedge(\varphi_i)_{i < \gamma}$, denote by V_i the set of free variables of φ_i and by $V = \bigcup_{i < \gamma} V_i$ the set of free variables of φ . For each $i < \gamma$, consider the formula

$$\tilde{\varphi_i} = \varphi_i \wedge \bigwedge_{x_k \in V - V_i} x_k = x_k,$$

and assume that the arity of φ is γ_0 . It is easily verified that (Ξ) holds for $\tilde{\varphi}_i$. Then, we have:

$$\begin{split} h^{\gamma}([\varphi]_{\mathcal{E}_{1}} \cap F_{1}^{\gamma_{0}}) &= h^{\gamma_{0}}([\bigwedge_{i < \gamma} \varphi_{i}]_{\mathcal{E}_{1}} \cap F_{1}^{\gamma_{0}}) \\ &= h^{\gamma_{0}}(\bigcap_{i < \gamma}([\tilde{\varphi}_{i}]_{\mathcal{E}_{1}}) \cap F_{1}^{\gamma_{0}}) \\ &= h^{\gamma_{0}}(\bigcap_{i < \gamma}([\tilde{\varphi}_{i}]_{\mathcal{E}_{1}} \cap F_{1}^{\gamma_{0}})) \\ &= \bigcap_{i < \gamma} h^{\gamma_{0}}([\tilde{\varphi}_{i}]_{\mathcal{E}_{1}} \cap F_{1}^{\gamma_{0}}) \\ &= \bigcap_{i < \gamma}([\tilde{\varphi}_{i}]_{\mathcal{E}_{2}} \cap F_{2}^{\gamma_{0}}) \\ &= (\bigcap_{i < \gamma}([\tilde{\varphi}_{i}]_{\mathcal{E}_{2}})) \cap F_{2}^{\gamma_{0}} \\ &= [\bigwedge_{i < \gamma} \varphi_{i}]_{\mathcal{E}_{2}} \cap F_{2}^{\gamma_{0}} \\ &= [\varphi]_{\mathcal{E}_{2}} \cap F_{2}^{\gamma_{0}}. \end{split}$$

The proof for $\bigvee (\varphi_i)_{i < \gamma}$ is similar and will be ommitted.

The next theorem is a model-theoretical generalization of well known theorems of theories of algebraically closed fields and differentially closed fields of characteristic zero. For instance, the Steinitz's isomorphism theorem: Let Kand K' be fields, and let L, L' be, respectively, algebraic closures of K and K'. Then, every isomorphism from K to K' is extendible to an isomorphism from L to L'.

Theorem 5.2 Let \mathcal{E}_i be isomorphic \mathcal{L} -structures over domains E_i , i = 1, 2; that have quantifier elimination in $\mathcal{L}_{\overline{\delta}\overline{\delta}}$, $\overline{\delta} = |\wp(E_1)|$. Assume that \mathcal{F}_i is a substructure of \mathcal{E}_i whose domain F_i satisfies $|F_i| < |E_i|$, i = 1, 2. Any isomorphism of substructures \mathcal{F}_1 and \mathcal{F}_2 admits an extension to an isomorphism of \mathcal{E}_1 and \mathcal{E}_2 .

Proof. Theorem 5.2 is a straightforward consequence of the theorems 4.2 and 5.1.

Corollary 5.3 An \mathcal{L} -structure \mathcal{E} is homogeneous if it has quantifier elimination in $\mathcal{L}_{\overline{\delta\delta}}, \ \overline{\delta} = |\wp(E)|.$

We recall that an \mathcal{L} -structure \mathcal{E} is *categorical* if any \mathcal{L} -structure \mathcal{E}' , |E| = |E'|, which is elementary equivalent to \mathcal{E} , is isomorphic to \mathcal{E} .

The following theorem is easily proved using compacity. If the cardinality of E is ω , the proof can be found in [3], corollary 3.1.3 and proposition 3.1.6.

Theorem 5.4 Let \mathcal{E} be a homogeneous \mathcal{L} -structure. If either $|\mathcal{R}|$ is finite or $|\mathcal{R}| \leq |E|$ and \mathcal{E} is categorical, then \mathcal{E} has quantifier elimination.

The theorem below is a consequence of theorems 4.5 and 5.4.

Theorem 5.5 Let \mathcal{E} be an \mathcal{L} -structure. If either $|\mathcal{R}|$ is finite or $|\mathcal{R}| \leq |E|$ and \mathcal{E} is categorical, then the following statements are equivalent:

- 1. \mathcal{E} has quantifier elimination in $\mathcal{L}_{\overline{\delta}\overline{\delta}}$, $\delta = |\wp(E)|$;
- 2. \mathcal{E} has the property of strong isomorphisms;

3. \mathcal{E} is homogeneous.

6 Final remarks

As far as the authors know, the notion of strong isomorphisms, stated in a set theoretical way, is due to J. S. e Silva. See [5].

Although Silva did not have the notion of infinitary languages, his result in [5], pp 112-113 is, in essence, equivalent to theorem 4.2. See also [1], theorem 7.1 p 23.

Acknowledgements

Thanks to anonymous reviewer for a detailed analysis of the paper which helped us to improve it.

References

- Da Costa, N. C. A., Rodrigues, A. A. M. Definability and invariance. Studia Logica, vol 86: 1–30, 2007.
- [2] Dickmann, M. A. Large Infinitary Languages: model theory. North Holland Publishing Company. Amsterdam. 1975.
- [3] Macpherson, D. A survey of homogeneous structures. Discrete Mathematics. Vol 311, Issue 15: 1599–1634, 2011.
- [4] Rodrigues, A. A. M., de Miranda Filho, R. C., de Souza, E. G. Definability in infinitary languages and invariance by automorphisms. *Reports on Mathematical Logic*, vol. 45: 119–133, 2010.
- [5] Sebastião e Silva, J. On automorphisms of arbitrary mathematical systems. *History and Philosophy of Logic*, vol. 6: 91–116, 1985.

Edelcio Gonçalves de Souza Department of Philosophy University of São Paulo (USP) Av. Prof. Luciano Gualberto, 315, Sala 1007, CEP 05508-010, São Paulo, SP, Brazil *E-mail:* edelcio.souza@usp.br

Alexandre Augusto Martins Rodrigues Department of Mathematics University of São Paulo (USP) Rua do Matão 1010, CEP 05508-090, São Paulo, SP, Brazil *E-mail:* prof.aamrod@gmail.com