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Abstract

In this short paper, we will demonstrate the construction of a Liar-type
sentence based on Curry’s Paradox from the Diagonal Lemma style, as
well as proofs of the first and second incompleteness theorems from such
sentence, highlighting that if the priority of demonstrations is inverted: in
this case the first incompleteness theorem follows from the second theorem
and the Rosser predicate is not necessary in achieving the result with plain
consistency. In the end, we make comments on the use of the Liar Paradox
rather than Curry’s to construct the undecidable sentence by Kurt Gödel
and the philosophical goals involved.
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1 Introductory Remarks

In [10], the example 4 of liar-type paradoxes cites a formalized Curry’s Para-
dox sentence, whereby the Diagonal Lemma exists a LA-sentence ϕ such that
T ⊢ ϕ ↔ (PrfT (⌜ϕ⌝) → fT (B)), being fT (B) a formula which does not con-
tain ϕ. However, the example historically lacks elaboration of variants and
the analysis of its consequences, just like the article that introduced the idea
of this sentence [11], or a variation from the general Diagonal lemma applica-
tion to prove Löb’s Theorem as was initially develop in [12] with a contem-
porary approach formalize in [7]. This article proposes performing this task
in the simplest and most informative way as possible towards directly to the
indemonstrability of consistency of T and as corollary the first incompleteness
theorem with plain consistency. Here, we opted mainly for the notations used
in (Smith, 2013), with less modifications. Consider the first-order language of
arithmetic LA and T a recursively enumerable sound extension of Peano arith-
metic (PA). n be the numeral for each natural number n. The Gödel number of
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a formula ϕ by gnT (ϕ) and its numeral by ⌜ϕ⌝. The language of propositional
logic will be standard, using the propositional variables p, q, r. . . and the
connectives ¬ , ∨, ∧, → and ↔. The provability predicate in T of y, ProvT (y)
is a

∑
1-formula where ProvT (y) ↔ ∃xPrfT (x, y). It reads above as ”y is the

Gödel number of a LA-sentence provable in T iff exists an x, such that x is
the codification’s proof of this Gödel number y in the formal system T .” To
facilitate the visualization of some proofs, we will use the short notation □p
indicating the predicate of ProvT (⌜p⌝), equivalent to the one used in [3] and
([13], chap. 33). At last, we make use of the Hilbert-Bernays-Löb derivability
rules (HBL), represented below:

i. if T ⊢ p then T ⊢ □p;

ii. T ⊢ (□(p → q) → (□p → □q));

iii. T ⊢ (□p → □□p).

We shall begin with understanding how a variation of Curry-like diago-
nal lemma can developed and your distinctions to the standard Fixed-Point
Theorem.

2 Curry-like Diagonalization

Curry paradox has both conjunctive or syntactic theoretical versions – set-
theoretic – and veritative or semantic versions – truth-theoretic. 1 However, as
explained in ([10], p. 387) the self-referentiality of a sentence S is summarize
as the statement that if S itself is true, then an arbitrary sentence B∗ follows,
that is, propositionally: (S ≡ S → B∗). If B∗ is a falsehood, like ”0 = 1”, it
leads to inconsistency without any apparent deductive problem. However, the
idea of expressing a formalization of the paradox in T , the theoretical-veritative
presents itself as the truth predicate, but in T expressed by pure symbolic ma-
nipulation in syntactic aspects of the provability predicate ProvT . We could
think about how this paradox might be suitable for pushing the system power
to extract proof of its own consistency to the limit — if possible — because
Curry’s sentence significance as a liar-type paradox p ↔ (□p → B) allows
results without necessarily falling into inconsistencies. Therefore, to formalize

1An explanation of the conjunctive theoretical version guided by Russell’s Paradox can
be seen in [14]. The most publicized and demonstrated version based on the Contraction
Principle (where A and B are formulas, then (A → (A → B)) → (A → B))) is found in this
article too and Curry’s canon article [5].
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Curry’s paradox in T , we must aim to establish formulas: first, to define the
consistency guarantee of T if the proof of a diagonalized sentence does not lead
us to the proof of a contradiction; and second, a predicate that its definition
based on the existence of some formula in which there is the negation of the
first function described above.

Consider diag(gn(ϕ)) as a p. r. function applies in ⌜ϕ⌝, having the Gödel
number of the diagonalization of ϕ as a result. This can be done by the substi-
tution function in a formula with a free variable its own Gödel number. Take
Diag(y, z) as a characteristic function of diag(y) with z as a Gödel number of
the diagonalization of y.

Then we have:

Definition 2.1 Consistent Diagonalization Function:

Gcd(x, y) =def ∃zDiag(y, z) ∧ ¬(PrfT (x, z) → ProvT (⊥))

Definition 2.2 Curry’s Predicate:

CPrd(y) =def ∃x¬Gcd(x, y)

Theorem 2.3 (Curry-like Diagonal Lemma): T ⊢ CT ↔ (ProvT (⌜CT ⌝) →
ProvT (⊥)).

Proof. By definitions 2.1 and 2.2, we have:

CPrd(y) = ∃x¬∃Diag(y, z) ∧ ¬(PrfT (x, z) → ProvT (x));

↔ ∃x∀z¬(Diag(y, z) ∧ ¬(PrfT (x, z) → ProvT (⊥)));

↔ ∃x∀z¬(Diag(y, z) ∧ ¬(PrfT (x, z) → ProvT (⊥)));

↔ ∀z(Diag(y, z) → ((∃xPrfT (x, z) → ProvT (⊥));

CPrd(y) =def ∀z(Diag(y, z) → ((ProvT (z) → ProvT (⊥))

Then, by diagonalizing CPrd(y), we have the sentence CT , and trivially
T ⊢ CPrd(⌜CPrd(y)⌝) ↔ CT , so therefore:

T ⊢ CT ↔ ∀z(Diag(⌜CPrd(y)⌝, z) → ((ProvT (z) → ProvT (⊥));
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However, (Diag(⌜CPrd(y)⌝, z), z have Gödel number equal to ⌜CT ⌝, then:

T ⊢ CT ↔ ∀z((z ↔ ⌜CT ⌝) → (ProvT (z) → ProvT (⊥));

On the right side of the biconditional, the result leaves us to T ⊢ CT ↔
(ProvT (⌜CT ⌝) → ProvT (⊥)).

■

3 Indemonstrability of Consistency and Undecid-
ability

Now we will show that the proofs using Curry’s version of the diagonal argu-
ment can be done inversely: from the second to the first incompleteness the-
orem. Consider Con(T ) the sentence expressing the consistency of T , which
in this case will be symbolized by ¬□(⊥), where ⊥ is a refutable sentence like
”1 = 0” or ”2 + 2 = 5”.

Theorem 3.1 (Indemonstrability of Consistency): If T is a consistent theory,
then T ⊬ Con(T ).

Proof. So initially, for simplification of theorem 2.3, we have the LA-sentence:
C ↔ (□(C) → □(⊥)). With HBL derivability conditions, it follows that:

1. T ⊢ (□C → □(⊥)) → C, deriving of Theorem 2.3;

2. T ⊢ (¬□C → C), of (1);

3. T ⊢ □(¬□C → C) → (□¬□C → □C), applying (i) and (ii) in (2);

4. T ⊢ □¬□C → □C, modus ponens in (3);

5. T ⊢ ¬□C → (□C → ⊥), a tautology;

6. T ⊢ □(¬□C → (□C → ⊥)) → (□¬□C → □(□C → ⊥)), applying (i)
and (ii) in (5);

7. T ⊢ □¬□C → □(□C → ⊥), modus ponens in (6);

8. T ⊢ □(□C → ⊥) → (□□C → □(⊥)), (ii) in (7);

9. T ⊢ □¬□C → (□□C → □(⊥)), (7) and (8);

10. T ⊢ □C → □□C, (iii) in C;
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11. T ⊢ □¬□C → □□C, (4) and (10);

12. T → □¬□C → □(⊥), (9) and (11);

13. T ⊢ C → (□(C) → □(⊥)), deriving of Theorem 2.3;

14. T ⊢ ¬□(⊥) → (C → ¬□C), transformations of (13);

15. if T ⊢ ¬□(⊥), then;

16. T ⊢ C → ¬□C, modus ponens of (14) and (15);

17. T ⊢ □C → □¬□C, (ii) of (16);

18. T ⊢ □C → □(⊥), modus ponens of (17) and (12);

19. ¬□(⊥) → ¬□C, contrapositive in (18);

20. T ⊢ ¬□C, modus ponens of (19) and (15);

21. T ⊢ ¬□¬□C → ¬□(⊥), contrapositive of (12);

22. T ⊢ ¬□¬□C, modus ponens of (21) and (15);

23. However, T ⊢ □¬□C, applying (i) of (20);

24. T ⊢ ¬□¬□C ∧ □¬□C, (22) e (23), here we have a contradiction. Qua,
⊬ ⊥;

25. T ⊬ ¬□(⊥), i.e. T ⊬ Con(T ).

■

If we look at the simplified proof of the second theorem with the same
style offered in [3] it’s reduced. It seems due to Curry’s version of the diagonal
lemma being more weak, i.e., we have less power to derive other sentences
than the standard lemma. We can consider the validity of T ⊢ ¬□(⊥) in (19)
sooner than Boolos simple proof. And because of the components of Curry
Diagonal Lemma and Theorem 3.1, the First Incompleteness Theorem with
plain consistency follows.

Corollary 3.2 (Curry-like Incompleteness Theorem): If T is consistent, then
there is a LA-sentence CT such that T ⊬ CT and T ⊬ ¬CT .
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Proof. Take T ⊢ CT ↔ (ProvT (⌜CT ⌝) → ProvT (⊥)).

If T ⊢ CT , then T ⊢ ProvT (⌜CT ⌝) → ProvT (⊥);

T ⊢ ProvT (⌜CT ⌝) by (i) and by modus ponens, ProvT (⊥). But T is sound,
so we have a contradiction, T ⊬ CT . If T ⊢ ¬CT , then T ⊢ ¬(ProvT (⌜CT ⌝) →
ProvT (⊥));

By transformation, T ⊢ ProvT (⌜CT ⌝) ∧ ¬ProvT (⊥), and T ⊢ ¬ProvT (⊥),
i.e, T ⊢ ¬□(⊥). By Theorem 3.1 and T be

∑
1-sound, a contradiction. Then

T ⊬ ¬CT , being CT true but not provable in T 2. ■

4 Discussion and Concluding Remarks

If we understand this result as a certain sense simpler — since the Curry ver-
sion of the diagonal lemma is weaker and only take account of plain consistency
– why didn’t Kurt Gödel develop and use other paradoxes? The simple answer
is based on that Gödel had distinct goals — besides the fact that the appli-
cation of diagonalization is a conundrum, until for him. The less committed
answer is that the use of the Liar is convenient, because its the most famous,
simpler (in the sense of understanding it) and antient paradox known. Maybe
the elaboration of a paradox like Curry’s didn’t occur to him3. But Gödel
considered that other antinomies could be used, indeed.

Historically, there are three known moments in the literature which Gödel
comments on undecidable sentences of paradoxical type: the first is in your
canonical article of 1931 when referring to the similarity of his undecidable
sentence to the Liar Paradox, he states in a footnote ”(. . . ) any epistemological
antinomy can be used for an analogous demonstration of non-demonstrability”
([8], p. 231); in ([9] 1934), where Gödel points out the constructing a propo-
sition in which we can apply its own coding, i.e., the diagonal argument, in
a paradox-type sentence; and in ([4], p. 26), where the computer scientist
Gregory Chaitin claims that managed to demonstrate the first incomplete-
ness theorem based on Berry’s Paradox. Gödel only answers that ”[...] it

2The sentence C could interpreted as ”if I am provable, then there is proof of a contra-
diction in T”, a variation of Löb’s sentence in ([12], p. 117). It can also interpreted as a
disjunction, ”there is no proof that a contradiction derives from me (I am indemonstrable)
or there is proof of a contradiction in T”. As it is indemonstrable, it turns out to be true.

3Furthermore, Haskell Curry formulated this paradox more than ten years after Gödel’s
article in [5]. There are already developing undecidable paradoxical sentences, like the for-
malization of Yablo’s paradox in [1], that with plain consistency we have incompleteness
results.
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doesn’t matter which paradox you use”, while Chaitin comments about an
informational-theoretical interpretation of incompleteness, giving the impres-
sion that the formalization of any antinomy is sufficient to reach the result of
undecidability.

However, despite the claims, Gödel was not interested specifically in the
formalized paradox per se, but in the results associated with its use in demon-
strating the existence of a sentence that could neither be proven nor disproved
in some formal systems; even though it was recognize by Carnap later in your
Logische Syntax der Sprache, the application of the diagonal lemma has relative
importance in Gödel’s incompleteness results, and aimed at constructing a sen-
tence that expresses its own indemonstrability apparently shows more interest
in the incompleteness phenomenon than in the demonstrability of consistency
in itself — a hilbertian aim. Could this be the case?

In [15], Solomon Feferman retrace Gödel’s steps to incompleteness, and
states that his first interests were to prove the consistency of arithmetic and
then the relative consistency of analysis. Nevertheless, he realized that the no-
tion of arithmetical truth of sentences would not be definable, moving towards
the investigation of undecidable sentences and the notion of demonstrability,
previously treated by logicians as a way to formalize truth. This information
brings some sense about the use of liar paradox: its natural language version
is semantically linked to notions of truth and falsehood. Your achievements,
in addition to establishing a strong post argument for the clear distinction
between truth and demonstrability, had a major influence of your objectivism
about mathematics, and as perceived by Von Neumann, led to the corollary
of the indemonstrability of consistency. Although, Gödel was initially inter-
ested in the consistency problem and other logical investigations led him to the
incompleteness theorem.

In [6], when discussing arithmetic syntax and the diagonal lemma, high-
lights that Gödel’s work is aligned with another logical-philosophical goals,
distinct but closed of those mentioned above. Hintikka argues that your re-
sults belong to Mathematics, not Logic, claiming that the proof of incomplete-
ness shows that not all arithmetic sentences are true and can be mechanically
proved ([6], p. 37). The type of incompleteness exposed by Gödel would be
a deductive incompleteness, relative to first-order arithmetic, in which there
would not be a computable process to enumerate all its truths. Therefore, in-
completeness would not be about the limits of logic, but about the limitation
of our idealized notion of computability and mechanical process.

Finally, in the 1931, Gödel exchange letters with Ernst Zermelo and exposes
what is called The Master Argument in [13], detailed in [2]. The Gödel’s
argument is divided into two lemmas, where there is a lemma of expressiveness
of the provable sentences in PA and inexpressiveness of the truth sentences in
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the language of PA. The incompleteness arise when we consider both lemmas.
This different way of crafting your argument directly contrasts soundness and
completeness, but in a non-constructive manner, deviating from the intention of
an “intuitionistically unobjectionable” proof, like in 1931’s paper. Thus, Gödel
clearly was interested in other topics and sought to elaborate his ideas based
on concepts that would help him develop his points. However, this result of
Curry paradox version of incompleteness is reasonably interesting, simple and
is aligned with Gödel’s logical initial hilbertian interests.
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